CENTRALE LYON

il y a 16 heures


Lyon, France Ec Lyon Temps plein

CENTRALE LYON - Post-doctoral position in computer science Location: On-site Heterogeneous compression of AI models Efficient modern AI approaches heavily rely on Deep Neural Networks (DNN), also known as deep learning. They are used in multiple application domains (industrial production, entertainment, security, etc.) for solving complex issues related to computer vision, natural language processing… Recent AI models are very powerful, but they are composed of millions or even billions of parameters so that they can be costly to train but also to use at inference time. It is the reason why several techniques have been designed to reduce this cost, such as pruning part of the model weights [1] or changing value precision by quantization [2]. Quantization is a widely‑used technique to reduce the memory footprint, computational cost and power consumption of deep neural networks by lowering the precision of weights and activations (e.g., from 32‑bit floating point to 8‑bit integer or even fewer bits). Traditional quantization methods tend to apply a uniform precision (bit‑width) and uniform quantization scheme across all layers or all parameters of the network, such as the GPTQ algorithm [3]. In contrast, heterogeneous quantization (also called mixed‑precision) means that different parts of the network (different layers, different channels, even individual parameters) can be assigned different precisions or different quantization schemes according to their sensitivity, distribution of values, or hardware needs [4]. This more fine‑grained approach enables more aggressive compression (lower bits where tolerable) while preserving accuracy where it matters. Despite the theoretical benefits of the heterogeneous quantization framework, a limitation is due to the hardware (HW) architecture used to deploy the quantized model. Indeed, HW architectures are designed to manage a set of pre-defined data precision and types (e.g., integer 4 bit, integer 8 bit, etc). This includes the memory-processing unit data transfers and arithmetic circuits, meaning that, for custom precisions (e.g., a priori n bit data), conversions and cast operations have to be added eventually increasing the overhead of the overall implementation [5]. The goal of this post‑doc position is to investigate heterogeneous quantization according to efficiency and trustworthiness applied to a given AI model in order to derive requirements to design a custom hardware architecture. Tasks: Investigation of quantization techniques using PyTorch framework. In this first task the goal will be to target a “simple” Convolutional Neuronal Networks (CNN) architectures for object recognition (e.g., MobileNet) and explore different granularity of quantization (e.g., by layer, by filter, by parameters, …). This task will require to manipulate/modify the library functions of PyTorch like the Conv2D. Extend the analysis of Task 1 to a small Language Models (LMs) based on Transformer architectures for classification tasks related to textual data, starting with reasonable encoder architectures such as TinyBERT [6]. Thanks to the outcomes of tasks 1) and 2) requirements to design a custom hardware architecture to efficiently execute the quantized model will be produced. A model of the custom hardware architecture will be developed in cooperation with on‑going research activities and will allow to evaluate the heterogeneous quantization from the energy efficient point of view. Metrics to be used will be Energy per inference, Energy per token and clearly the accuracy. Profile We are seeking a postdoctoral researcher with a PhD in computer science or a closely related field, and a strong background in machine learning and deep learning. The ideal candidate should be proficient with modern frameworks and methodologies in computer vision and/or natural language processing, and capable of applying these techniques to complex, real‑world problems. A solid understanding of model architectures, training strategies, and evaluation methods is expected. The candidate should also be able to understand how the computations are done at the matrix level. Experience or familiarity with model compression and optimization techniques—such as pruning, quantization, or knowledge distillation—would be a significant advantage. Dates Post Doc is expected to start in April or May 2026, duration 12 months. The Ph.D. candidate will be supervised by the LIRIS (expertise in Machine Learning) and INL (expertise in hardware architecture) teams in Lyon (Ecole Centrale Campus). The salary will follow standard French rates. Job requirements Diploma: PhD in Computer Science (or related field like Computer Engineering) Experience: deep learning Knowledge: mathematics of deep learning, software implementation of deep learning Operational skills: python programming (in particular, libraries related to deep learning such as PyTorch) Behavioural skills: ability to work effectively in a multi-disciplinary team environment [1] Hassibi, Babak, David G Stork, and Gregory J Wolff (1993). « Optimal brain surgeon and general network pruning. » In: IEEE international conference on neural networks. IEEE, pp. 293–299 [2] Gupta, Suyog, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan (2015). « Deep learning with limited numerical precision. » In: International conference on machine learning. PMLR, pp. 1737–1746 [3] Frantar, Elias, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh (2023). “GPTQ: Accurate post-training quantization for generative pre-trained transformers”. In: ICLR [5] Ali S. B., S. -I. Filip, O. Sentieys and G. Lemieux, "MPTorch-FPGA: A Custom Mixed-Precision Framework for FPGA-Based DNN Training," 2025 Design, Automation & Test in Europe Conference (DATE), Lyon, France, 2025, pp. 1-7, doi: 10.23919/DATE64628.2025.10993010. [6] Jiao, Xiaoqi, et al. "TinyBERT: Distilling BERT for natural language understanding." Findings of the association for computational linguistics: EMNLP 2020. 2020. #J-18808-Ljbffr


  • Centrale Lyon

    il y a 1 semaine


    Lyon, France CENTRALE LYON Temps plein

    **Environnement du poste**: Le poste est en temps partagé entre 3 établissements : Centrale Lyon à Ecully, VetaGro Sup sur le campus de Marcy l’étoile et l’EM Lyon à Jean Macé (Lyon 7ème). Le temps de travail se répartit comme suit : 2 jours à Centrale Lyon, 2 jours à l’EM Lyon et 1 jour à VetaGrop Sup. **Descriptif du poste**: - Centrale...

  • Ecole Centrale de Lyon

    il y a 7 jours


    Lyon, France ECOLE CENTRALE DE LYON Temps plein

    Environnement du poste: Créée en 1857, l’École Centrale de Lyon figure parmi le top 10 des écoles d’ingénieurs en France. Elle forme plus de 3 000 élèves de 50 nationalités différentes sur ses campus d’Écully et de Saint-Étienne (ENISE, école interne). Ingénieurs généralistes, ingénieurs de spécialités, masters et doctorants...

  • Ecole Centrale de Lyon

    il y a 2 semaines


    Lyon, France ECOLE CENTRALE DE LYON Temps plein

    Introduction L’École Centrale de Lyon (ECL) est un établissement public à caractère scientifique, culturel et professionnel (EPCSCP). Depuis le 1er janvier 2021, l’École Nationale d’Ingénieurs de Saint-Etienne (ENISE) est intégrée à l‘Ecole Centrale de Lyon en tant qu’école interne. Membre du Groupe des Écoles Centrales et du réseau...

  • Ecole Centrale de Lyon

    il y a 2 semaines


    Lyon, France ECOLE CENTRALE DE LYON Temps plein

    **FINALITES**: Assurer la pérennité du patrimoine immobilier du campus d’Ecully dans un souci constant de sécurité, de maîtrise des coûts et de bonne gestion environnementale. **MISSIONS**: Assurer la gestion et la mise à jour des données patrimoniales. Assurer la conduite de projets d’opérations immobilières de petite ou moyenne envergure...

  • CENTRALE LYON

    il y a 2 semaines


    Lyon, France Ec Lyon Temps plein

    CENTRALE LYON - Gestionnaire de scolaritéEcully, Auvergne-Rhône-Alpes, FranceDirection des formationsDescription de l'offre d'emploiEnvironnement du poste : Créée en 1857, Centrale Lyon figure parmi le top 10 des écoles d’ingénieurs en France. Elle forme plus de 3 000 élèves de 50 nationalités différentes sur ses campus de Lyon-Écully et de...

  • Ecole Centrale de Lyon

    il y a 1 semaine


    Lyon, France ECOLE CENTRALE DE LYON Temps plein

    **FINALITES**: Sous la responsabilité du responsable du service exploitation et maintenance et des espaces verts, l’Agent (e) polyvalent « Espaces Verts » et « Extérieurs » a pour mission d’assurer la pérennité du patrimoine immobilier du campus d’Ecully dans un souci constant de sécurité, et de bonne gestion...

  • Ecole Centrale de Lyon

    il y a 1 semaine


    Lyon, France ECOLE CENTRALE DE LYON Temps plein

    L’École Centrale de Lyon (ECL) est un établissement public à caractère scientifique, culturel et professionnel. Membre du Groupe des Ecoles Centrales et du réseau des Écoles Nationales d’Ingénieurs, l’ECL forme des ingénieur-es généralistes de haut niveau, des ingénieur-es de spécialité, des étudiant-es en master et des docteur-es....

  • CENTRALE LYON

    il y a 16 heures


    Lyon, France Ec Lyon Temps plein

    CENTRALE LYON - Phd Numerical modeling of acoustic propagation in planetary atmospheresOn-siteResearch field _____________________________________________ECL and Laboratory presentationFounded in 1857, École Centrale de Lyon is one of the top 10 engineering schools in France. It trains more than 3,000 students of 50 different nationalities on its campuses...

  • Assistant Administratif

    il y a 3 jours


    Lyon, France La Centrale de Financement Temps plein

    Entreprise Créée en 2013, La Centrale de Financement (LCF) est Intermédiaire en Opérations de Banque et Services de Paiement (prêts immobiliers, prêts professionnels, Regroupement de crédits, prêts à la consommation) et Intermédiaire en Assurance. Filiale du groupe APRIL notre société assoit son développement sur la qualité de service et sur le...


  • Lyon, France Hospices Civils de Lyon - HCL Temps plein

    **Détails de l’offre**: **POSTE PROPOSÉ** RESPONSABLE DE PRODUCTION STERILISATION CENTRALE (H/F) **CONTRAT** CDI **DESCRIPTIF** La stérilisation constitue une unité fonctionnelle de la Pharmacie à Usage Intérieur « Pharmacie et Stérilisation Centrales » intégrée au PAM Pharmacie des HCL Elle est rattachée à la Direction Transversale de la...