Emplois actuels liés à Mechanic-Engineer - Villeurbanne - CESI

  • Mechanic-Engineer

    il y a 5 jours


    Villeurbanne, France CESI Temps plein

    Entreprise :CESI est une école d'ingénieurs qui fait de la promotion sociale par l'excellence un modèle de réussite. Rejoignez un environnement stimulant où l'esprit d'équipe, la diversité des projets et l'autonomie ne font qu'un. Découvrez une école qui a su développer un modèle unique et se donne les moyens au quotidien de relever les grands...


  • Villeurbanne, France Ansys Temps plein

    At Synopsys, we drive the innovations that shape the way we live and connect. Our technology is central to the Era of Pervasive Intelligence, from self‑driving cars to learning machines. We lead in chip design, verification, and IP integration, empowering the creation of high‑performance silicon chips and software content. Join us to transform the future...


  • Villeurbanne, France Synopsys Temps plein

    **We Are**: At Synopsys, we drive the innovations that shape the way we live and connect. Our technology is central to the Era of Pervasive Intelligence, from self-driving cars to learning machines. We lead in chip design, verification, and IP integration, empowering the creation of high-performance silicon chips and software content. Join us to transform...

  • Conducteur D'engins

    il y a 5 jours


    Villeurbanne, France REACTI'S EMPLOI Temps plein

    REACTI'S Emploi spécialiste en recrutement Intérim, CDD, CDI, recrute pour l'un de ses clients situé à Valserhône, **un(e) CONDUCTEUR D'ENGINS (H/F).** **Votre mission**: - vérifier le bon fonctionnement de son engin ; - surveiller et contrôler le chargement des matériaux (répartition, poids ) dans le respect des caractéristiques de l’engin ; -...

  • Conducteur D'engins

    il y a 5 jours


    Villeurbanne, France LELEDY COMPOST Temps plein

    **Employeur** La plate-forme de compostage LELEDY COMPOST est spécialisée, depuis plus de 20 ans, dans le co-compostage de boues de stations d'épuration avec des déchets verts broyés. Elle produit le compost Phertyl, compost conforme à la norme NFU 44095. La Plateforme de compostage LELEDY COMPOST recrute un/une conducteur/conductrice d’engin (H/F)...


  • Villeurbanne, France Effipro Intérim Temps plein

    **L'entreprise** EFFIPRO Intérim est une agence d’emploi familiale et indépendante basée à Lyon 7. Nous sommes spécialisée dans les métiers du BTP: Bâtiment, Travaux publics et Espaces Verts. Fort de **8 ans **d’expériences** dans le recrutement à Lyon 7, l'agence d'emploi EFFIPRO accompagne ses talents dans leurs projets professionnels avec...

  • Conducteur d'Engins H/F

    Il y a 30 minutes


    Villeurbanne, France PROAXION Temps plein

    PROAXION Intérim & Recrutement recherche un Conducteur d'engins de chantier pour intervenir sur différents sites de travaux publics. Vous travaillez en lien direct avec le chef de chantier et les équipes terrain pour assurer le bon déroulement des opérations. Vos principales missions consistent à : - Opérer sur divers engins de chantier (pelles,...


  • Villeurbanne, Auvergne-Rhône-Alpes, France Université Claude Bernard Lyon 1 Temps plein

    Confinement effects in surfactant-driven Marangoni flowsRéf ABG-134788Sujet de Thèse15/12/2025Autre financement publicUniversité Claude Bernard Lyon 1Lieu de travailVilleurbanne - Auvergne-Rhône-Alpes - FranceIntitulé du sujetConfinement effects in surfactant-driven Marangoni flowsChamps scientifiquesSciences de l'ingénieurMathématiquesPhysiqueMots...


  • Villeurbanne, France temporis Temps plein

    La convivialité, l'autonomie et le professionnalisme te caractérisent? L'énergie aussi? Alors rejoins l'aventure Temporis, le premier réseau national d'agences d'emploi en franchise! Aujourd'hui votre agence Temporis Annecy recherche, pour son client loueur d'engins de chantier sur la région annécienne : un préparateur d'engins de chantier H/F Tu...


  • Villeurbanne, France Ansys Temps plein

    **Requisition #**: 13528 When visionary companies need to know how their world-changing ideas will perform, they close the gap between design and reality with Ansys simulation. For more than 50 years, Ansys software has enabled innovators across industries to push boundaries by using the predictive power of simulation. From sustainable transportation to...

Mechanic-Engineer

il y a 2 heures


Villeurbanne, France CESI Temps plein

Entreprise : CESI est une école d'ingénieurs qui fait de la promotion sociale par l'excellence un modèle de réussite. Rejoignez un environnement stimulant où l'esprit d'équipe, la diversité des projets et l'autonomie ne font qu'un. Découvrez une école qui a su développer un modèle unique et se donne les moyens au quotidien de relever les grands défis de l'époque. Nos 25 campus, 28 000 étudiants, 8000 entreprises partenaires et 106 000 alumni témoignent de l'impact de CESI au niveau national. CESI accompagne ses étudiants en utilisant des méthodes innovantes de pédagogie active. L'établissement forme avec rigueur les futurs ingénieurs, techniciens et managers, dans les secteurs suivants : l'Industrie & l'Innovation, le BTP, l'Informatique et le Numérique et le Développement Durable. Parallèlement, CESI concrétise son engagement dans la Recherche à travers des activités menées au sein de son Laboratoire d'Innovation Numérique, CESI LINEACT. Les partenariats établis avec 130 universités à travers le globe, attestent de l'engagement international de CESI. Ces liens privilégiés offrent aux élèves ingénieurs une mobilité sortante et entrante à l'échelle internationale, façonnée notamment par des stages obligatoires faisant partie intégrante de leur cursus. Description du poste : Hybrid AI-reliability approach for modeling and dimensioning Wind Turbine Gearboxes Keywords : Reliability-Based Design Optimization, Wind Turbine Gearbox Description Wind turbines play a vital role in the global energy transition, forming the cornerstone of renewable electricity generation. Wind power harnesses an inexhaustible resource to produce clean energy, significantly reducing carbon emissions and dependence on fossil fuels. Recent forecasts predict that cumulative onshore wind capacity will increase by 45% between 2025 and 2030, reaching 732 GW. In this context of rapid expansion and increasing technological complexity, optimizing key wind turbine components has become a major challenge, making it necessary to move beyond traditional design approaches. In a collaborative engineering context, traditional design methodologies, based on a sequential 'design / simulation / return to initial stage in case of failure' loop, are becoming increasingly inadequate in the face of the growing complexity of mechanical systems like wind turbine gearboxes. These systems are subject to parametric uncertainties (e.g., material properties, gear mesh stiffness, wind loads) and complex dynamic excitations (aerodynamic torques, braking forces), requiring a robust design approach. New approaches integrating artificial intelligence (AI) and machine learning (ML) are emerging as powerful tools to optimize the design process and improve decision‑making in the face of uncertainty. This work is part of this dynamic. It aims to develop an innovative design approach, based on AI and ML, to support decision‑making and optimal design of mechanical systems. Specifically, this work aims to develop an innovative design approach, based on AI and ML, to support the robust design and optimization of wind turbine gearbox systems. The proposed approach will build upon the foundational work of [Trabelsi et al., 2021] for the precise finite element modeling of gearbox systems under uncertainty, incorporating interval computation methods to handle design variables like gear dimensions and material properties. To handle uncertainties effectively, we will draw inspiration from [Ghorbel et al., 2020] by modeling gear defects (e.g., profile errors, assembly defects) and their impact on dynamic behavior, validated by Monte Carlo simulations or chaos polynomials to ensure the robustness and reliability of the resulting solutions. Fast and reliable AI‑based meta‑models (e.g., Gaussian Processes, Bayesian Neural Networks) will be developed to replace costly simulations within optimization loops, ensuring robust and reliable solutions for vibration minimization and fault tolerance in wind turbine gearboxes. Objectives Conduct a literature review on the modeling and simulation of wind turbine gearboxes, with an emphasis on uncertainty management, gear defects, and reliability approaches. Develop a numerical model of the wind turbine gearbox system. This model will combine the physical equations of the system (e.g., gear mesh stiffness, braking torque, wind‑induced loads) and the variability in input parameters to study the effect of uncertainties on output responses (e.g., vibration levels, dynamic stability). Implement a Reliability‑Based Design Optimization (RBDO) process for gearbox sizing. The optimization will aim to minimize vibrations and gear failures while guaranteeing operational stability under variable wind conditions. Develop a software prototype integrating the modeling, uncertainty propagation, and optimization method. This prototype will apply the proposed methodology to the wind turbine gearbox case study and quantify its benefits compared to a deterministic design. Expected scientic / technical prdouction Conference Paper : Presenting the proposed method and results to an international conference. Lab presentation CESI LINEACT (UR 7527), Laboratory for Digital Innovation for Businesses and Learning to Support the Competitiveness of Territories, anticipates and accompanies the technological mutations of sectors and services related to industry and construction. The historical proximity of CESI with companies is a determining element for our research activities. It has led us to focus our efforts on applied research close to companies and in partnership with them. A human‑centered approach coupled with the use of technologies, as well as territorial networking and links with training, have enabled the construction of cross‑cutting research; it puts humans, their needs and their uses, at the center of its issues and addresses the technological angle through these contributions. Its research is organized according to two interdisciplinary scientific teams and several application areas. Team 1 'Learning and Innovating' mainly concerns Cognitive Sciences, Social Sciences and Management Sciences, Training Techniques and those of Innovation. The main scientific objectives are the understanding of the effects of the environment, and more particularly of situations instrumented by technical objects (platforms, prototyping workshops, immersive systems…) on learning, creativity and innovation processes. Team 2 'Engineering and Digital Tools' mainly concerns Digital Sciences and Engineering. The main scientific objectives focus on modeling, simulation, optimization and data analysis of cyber physical systems. Research work also focuses on decision support tools and on the study of human‑system interactions in particular through digital twins coupled with virtual or augmented environments. These two teams develop and cross their research in application areas such as Industry 5.0, Construction 4.0 and Sustainable City, Digital Services. Links to the research axes of the research team involved CESI Lineact Research Thematic : mechanics, materials and processes. Bibliography Trabelsi, H., Guizani, A., Barkallah, M., Hammadi, M., Haddrich, A., & Haddar, M. (2021). Consideration of the uncertainty in dimensioning of a gearbox of a wind turbine. Journal of Theoretical and Applied Mechanics, 59(1), 67-79. Ghorbel, A., Graja, O., Hentati, T., Abdennadher, M., Walha, L., & Haddar, M. (2020). The effect of the brake location and gear defects on the dynamic behavior of a wind turbine. Arabian Journal for Science and Engineering, 45(5), 4437-4451. Kamel, A., Dammak, K., El Hami, A., Ben Jdidia, M., Hammami, L., & Haddar, M. (2022). A modified hybrid method for a reliability‑based design optimization applied to an offshore wind turbine. Mechanics of Advanced Materials and Structures, 29(9), 1229-1242. Karmi, B., Saouab, A., Guerine, A., Bouaziz, S., Hami, A. E., Haddar, M., & Dammak, K. (2024). Reliability based design optimization of a two‑stage wind turbine gearbox. Mechanics & Industry, 25, 16. #J-18808-Ljbffr