Chercheur Doctorant HF

il y a 6 jours


SaintÉtienneduRouvray, France CESI Temps plein

Abstract The aim of this PhD is to develop models and methods that integrate driver behavior and user profiles into charging scheduling and the intelligent management of electric-vehicle batteries. Despite significant progress in battery management systems (BMS) most current approaches treat drivers as homogeneous users and rely on predefined charging strategies that neglect behavioral variability. Yet empirical evidence shows that differences in driving style charging frequency and thermal sensitivity can lead to substantial divergence in battery degradation rates. This research will analyze and model behavioral factors (driving habits charging patterns personal preferences) that influence battery lifetime and performance. Building on these insights it will design clustering stochastic modeling and machine-learning methods to characterize drivers and predict their impact on battery state-of-health (SOH). The resulting behavioral models will inform multi-objective scheduling and control algorithms that personalize BMS parameters (charge / discharge cycles thermal management charging strategies) to jointly optimize SOH and user satisfaction. These solutions will be embedded in a real-time feedback loop connected to the SHERPA-LAMIH simulator and the Dunasys Box to deliver tailored recommendations and validate impacts on both user experience and battery durability. This PhD lies at the intersection of optimization AI (federated learning reinforcement learning metaheuristics) and behavioral sciences and contributes to the objectives of BATTL-EU by proposing a reproducible methodology to extend battery life while improving user experience. The PhD is conducted within the BATTL-EU (ANR PRCE) project on the battery passport for electric vehicles which combines AI blockchain and federated learning to ensure data traceability privacy preservation and improved lifecycle management in collaboration with CESI (LINEACT) Dunasys and Université de Valenciennes (LAMIH) and aligned with EU sustainable-mobility and circular-economy goals. Scientific context The electrification of mobility raises new requirements for battery lifecycle modeling that couple electro-thermal / aging dynamics with real-world usage variability and traceability constraints. Market growth and EU circular-economy ambitions make durability second-life readiness and trustworthy data a priority motivating architectures that capture degradation drivers across the full lifecycle and ensure transparent tracking (battery passport). These policy and market drivers frame a technical need to embed user-induced variability directly into battery models and downstream decision-making rather than relying on stylized duty cycles. On the modeling side recent health-estimation (State of health SoH) and RUL approaches move beyond static parameterizations toward sequence-learning and hybrid (physics-informed / data-driven) predictors that can encode operational history and context. For instance recurrent generative models (e.g. VRNN) have been explored for RUL estimation under realistic usage variability improving short-term prediction and capturing uncertainty. Such models provide a basis for incorporating exogenous behavior features (temperature exposure C-rate patterns dwell / soak times) that modulate lithium inventory loss and impedance growth trajectories over time. To operationalize behavior user / driver profiling pipelines extract features from telematics and charging logs then apply unsupervised clustering or sequential modeling to derive representative archetypes. Public resources such as UAH-DriveSet and datasets capturing aggressive driving support feature design benchmarking and profile validation. Complementary driver-assistance studies demonstrate that control policies adapted to driving style and driver state can measurably alter vehicle-level dynamic evidence that behavior-aware adaptation is both detectable and impactful in practice. Given behavior-enriched models scheduling and control naturally become multi-objective : maximizing SOH / RUL and energy efficiency while minimizing user disutility (e.g. time inconvenience) and operational costs. This calls for optimization (including multi-objective / metaheuristic and learning-based control) that personalizes charge / discharge shaping thermal set-points and time-of-use strategies. Edge / cloud patterns for privacy-preserving analytics notably federated learning for distributed model updates and blockchain for accountable passport records enable fleet-wide learning without centralizing raw user data. Together these elements outline a behavior-aware closed-loop BMS paradigm in which user profiles inform predictive aging models and multi-objective schedulers while secure distributed data infrastructure sustains adaptation over time. Subject This PhD project aims to develop a behavior-aware battery management system by linking driver behavior profiles to adaptive multi-objective charging plans. The research will create actionable user profiles from telematics and charging data and a scheduler that customizes Battery Management System (BMS) settings. This system will also quantify in real-time how driving and charging choices affect battery State-of-Health (SOH). The project primarily involves behavior and profiling development and optimization and control allowing the improvement of the BMS. It will interface closely with SOH-modeling (using predictors and feeding behavior covariates) data-collection (feature design and quality checks) and safety / trust activities (constraints monitors fallback policies and explainability). The research will be guided by the following questions which structure the scientific inquiry and define the evidence to be gathered : RQ1 : How can stable privacy-preserving driver profiles (e.g. aggressiveness trip patterns charging habits delay tolerance) be extracted to generalize across contexts and remain actionable for control? RQ2 : How should these profiles parameterize prediction models and scheduling costs to make the SOH impacts of behavior explicit and quantifiable in real-time? RQ3 : Which multi-objective charging / thermal scheduling strategies optimally balance SOH preservation user satisfaction (time convenience) and energy / cost and how can they be adapted online to changes in profile and context? RQ4 : What safety constraints monitors and fallback modes are necessary to ensure battery / thermal safety and user trust when deploying behavior-aware control? RQ5 : How can the causal link between driving / charging behavior and SOH be effectively communicated via Human-Machine Interface (HMI) to promote interpretable recommendations and behavior change? To address these questions the PhD pursues the following objectives each mapped to WP2 / WP4 deliverables and integration milestones : O1 : Design a profiling pipeline (feature engineering clustering / sequence modeling) to generate portable driver archetypes with confidence measures (WP2). O2 : Develop a real-time SOH-impact estimator conditioned on profile and context to reveal the marginal effects of behavior on degradation (WP2 SOH). O3 : Create a behavior-aware multi-objective scheduler (using Pareto optimization scalarization or Reinforcement Learning) that personalizes charging / thermal set‑points while enforcing safety constraints (WP4). O4 : Integrate and demonstrate the system in a closed loop (SHERPA‑LAMIH Dunasys Box) with live dashboards displaying instant and cumulative SOH impact and user‑cost metrics (WP4). O5 : Provide privacy‑respecting learning mechanisms (e.g. federated updates) and explainable recommendations to support adoption (WP2 WP4 Safety / Data). This PhD consumes the SOH / RUL predictors developed by the SOH‑modelling PhD and in return supplies behaviour‑conditioned covariates and stress proxies that improve model fidelity under heterogeneous usage. It co‑designs acquisition protocols with the data‑collection PhD to ensure that telemetry and charging logs expose the features needed for robust profiling and it integrates runtime monitors and fallback strategies from the safety PhD to guarantee safe deployment of personalised schedules. Collectively these interfaces operationalise BATTL‑EUs goals : enabling a user‑aware privacy‑preserving battery‑passport ecosystem that quantifies behaviour‑SOH causality delivers personalised charging policies with auditable safety and traceability and demonstrates measurable gains in durability and user experience at the edge (Dunasys Box) and in simulation (SHERPA‑LAMIH). Are you the talent we are looking for A Masters degree in industrial engineering, computer science or operations research. Scientific and technical skills Modeling simulation and optimization Strong understanding and development level in Python and C Solid knowledge of machine learning methods Knowledge of stochastic modeling Report and scientific article writing; good communication skills (English : minimum B1 required; B2 preferred) Soft skills Demonstrated autonomy, initiative and intellectual curiosity. Strong teamwork and collaboration skills. Proficiency in both English and French. To convince you a little more CDD 36 mois 6 semaines de congés payés (au prorata du temps travaillé) 14 RTT (au prorata du temps travaillé) Tickets restaurant Mutuelle entreprise Prime participation / intéressement Charte du télétravail Ordinateur portable Si ce profil vous correspond et que vous partagez les valeurs de CESI. N’attendez plus et postulez avec nous Job details Employment Type: Full-Time Experience: years Vacancy: 1 Monthly Salary: 28000 - 28000 #J-18808-Ljbffr


  • Chercheur Doctorant

    il y a 5 jours


    Saint-Étienne-du-Rouvray, France CESI Temps plein

    Abstract The aim of this PhD is to develop models and methods that integrate driver behavior and user profiles into charging scheduling and the intelligent management of electric-vehicle batteries. Despite significant progress in battery management systems (BMS), most current approaches treat drivers as homogeneous users and rely on predefined charging...

  • Chercheur Doctorant H/F

    il y a 5 jours


    Saint-Étienne-du-Rouvray, France Cesi Certification Temps plein

    AbstractThe aim of this PhD is to develop models and methods that integrate driver behavior and user profiles into charging scheduling and the intelligent management of electric-vehicle batteries. Despite significant progress in battery management systems (BMS), most current approaches treat drivers as homogeneous users and rely on predefined charging...


  • Saint-Étienne, France Institut Mines-Télécom Temps plein

    Description du posteMines de St-Etienne participe aussi aux AMI-CMA Sécurité (TCE) et 5G (IMTFor5G+), et dans ce cadre, nous mettons en place une infrastructure 5G privée complète, et nous prévoyons d’y déployer des cas d’usages ayant pour cadre l’industrie du futur. Notre objectif est principalement d’en évaluer les besoins de sécurité et...


  • Saint-Denis, France Fondation Nationale CiuP Temps plein

    La Cité Internationale Universitaire de Paris (CiuP) est une fondation de droit privé reconnue d'utilité publique. Créée en 1925 pour œuvrer au rapprochement entre les peuples en accueillant des étudiants et chercheurs étrangers du monde entier, la Fondation coordonne la gestion, l'animation et le développement d'un site de 34 hectares, dédié à...

  • Chercheur Post-Doctorant H/F

    il y a 1 semaine


    Le Bourget-du-Lac, Auvergne-Rhône-Alpes, France Université Savoie Mont Blanc - Polytech Annecy-Chambéry - Laboratoire systèmes et matériaux pour la mécatronique Temps plein

    À propos de nousAvec plus de étudiants, une offre de formation pluridisciplinaire riche d'une centaine de diplômes nationaux et des laboratoires de qualité qui la font apparaître dans le classement de Shanghai, l'université Savoie Mont Blanc, membre de l'alliance européenne UNITA, est un établissement à taille humaine qui conjugue la recherche et la...


  • Saint-Martin-d’Hères, Auvergne-Rhône-Alpes, France Choisir le Service Public Temps plein

    Informations générales Organisme de rattachement CNRS   Référence UMR5217-MAGRIC-001   Date de début de diffusion /01/2026 Date de parution /01/2026 Date de fin de diffusion /01/2026 Intitulé long de l'offre Doctorant en bioinformatique du cancer (H/F) Date limite de candidature26/01/2026 Nature du contratCDD de 3 ans VersantFonction...


  • Saint-Étienne, France Ecole des Mines de Saint-Etienne -Centre SPIN - Dé Temps plein

    **Plateforme de capteurs de gaz sélectifs pour le diagnostic prématuré du cancer du poumon**: - Réf **ABG-127668** - Sujet de Thèse - 20/12/2024 - Contrat doctoral - Ecole des Mines de Saint-Etienne -Centre SPIN - Dé - Lieu de travail- Saint Etienne - Auvergne-Rhône-Alpes - France - Intitulé du sujet- Plateforme de capteurs de gaz sélectifs pour le...


  • Saint-Étienne-du-Rouvray, France LITISLAB - Laboratoire d'Informatique, du Traitement de l'Information et des Systèmes Temps plein

    Ingénieur de recherche « deep learning » Les progrès récents en intelligence artificielle dans le domaine de l’apprentissage statistique en général et celui des réseaux de neurones profonds en particulier, permettent d’envisager l’utilisation de ces technologies dans la conception de véhicules de plus en plus autonomes. Le projet de chaire...


  • Le Bourget-du-Lac, Auvergne-Rhône-Alpes, France Université Savoie Mont Blanc - Sciences et Montagne - Laboratoire de mathématiques Temps plein

    À propos de nousAvec plus de étudiants, une offre de formation pluridisciplinaire riche d'une centaine de diplômes nationaux et des laboratoires de qualité qui la font apparaître dans le classement de Shanghai, l'université Savoie Mont Blanc, membre de l'alliance européenne UNITA, est un établissement à taille humaine qui conjugue la recherche et la...


  • Saint-Martin-d'Hères, France JobiJoba FR S2 Temps plein

    Les approches de transcriptomique spatiale offrent aujourd’hui une vision sans précédent de l’organisation des cellules au sein de leur environnement tissulaire. Elles permettent notamment d’identifier des niches cellulaires ou « éco-types » jouant un rôle majeur dans la dynamique tumorale et dans les interactions avec le microenvironnement....