Approche hybride IA/CFD pour la simulation des impacts de gouttes lors des procédés de projection thermique

il y a 1 jour


Talence, France Université de Bordeaux Temps plein

Topic description Suspension Plasma Spraying (SPS) is an emerging industrial process, particularly for the creation of ceramic coatings resistant to thermomechanical stresses, used as long-life thermal barriers for aircraft engine. For the aeronautics industry, it is classified as a special process whose output elements can only be verified by monitoring or post-measurement, and whose deficiencies therefore only become apparent once the product is in use. In this process, a liquid suspension containing submicron particles of the material to be deposited is injected into a thermal plasma jet, where it is fragmented and evaporated. This releases individual or agglomerated submicron particles, which are subsequently accelerated and melted before impacting the surface of the part to be coated, spreading upon impact and solidifying to build up the coating. The structure of the coating is a function of the operating conditions, from the plasma torch to the droplet impact conditions (shape, velocity, temperature, and substrate roughness). A dense or columnar structure may occur, which influences the final thermomechanical properties of the material. A full CFD simulation of the entire process is beyond reach due to limitations in the number of particles that can be simulated. Therefore, we propose a multi-step approach, consisting of CFD simulations at the droplet scale combined with a stochastic approach [1] enriched by AI at the coating scale: • Simulations of droplet impacts using the CFD code Notus [2] aim to populate a database representing the topology of various instantaneous, representative sprayed surfaces, ranging from simple to more complex configurations; • A neural network tool, trained on CFD results, aims to replace CFD simulation capacity by representing impact surfaces with sufficient accuracy. The AI tool's results can be validated and refined through additional CFD simulations; • The stochastic approach aims to represent realistic spray conditions by modeling the spatio-temporal distribution of particles, including their radius, velocity, temperature, and impact point; • The combination of the stochastic approach and the AI tool will surpass the capabilities of CFD simulations by enabling the representation of large surfaces and large numbers of particles. The PhD thesis focuses on the AI/CFD component of the project. Artificial intelligence has been used for several years to detect, segment and reconstruct the contour of the interface between two fluids in experimental images [3, 4]. Rather than segmentation or object detection in an image, the objective of the AI tool to be developed is the prediction of a final state from an initial state and relevant parameters. Given an initial condition consisting of a field of volume fractions representative of the surface state and a characterisation of the particle and its point of impact before impact, the tool must predict the new volume fraction state representative of the droplet's spreading and subsequent solidification. The work will start with a bibliography of available AI analysis tools based on image and volume fraction processing. It will also involve creating a database of droplets impacting substrates with an increasing level of topological complexity, Python programming, comparing the selected methods and 2D/3D verification of the proposed approaches. Particular attention will be paid to quantifying the reliability of predictions [5]. Please send a detailed CV, undergraduate and Master's transcripts, Master's reports and reference contacts to all the following contacts: Emmanuelle Abisset-Chavanne I2M-Bordeaux : Stéphane Glockner I2M-Bordeaux: Vincent Rat IRCER-Limoges: ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Suspension Plasma Spraying (SPS) is an emerging industrial process, particularly for the creation of ceramic coatings resistant to thermomechanical stresses, used as long-life thermal barriers for aircraft engine. For the aeronautics industry, it is classified as a special process whose output elements can only be verified by monitoring or post-measurement, and whose deficiencies therefore only become apparent once the product is in use. In this process, a liquid suspension containing submicron particles of the material to be deposited is injected into a thermal plasma jet, where it is fragmented and evaporated. This releases individual or agglomerated submicron particles, which are subsequently accelerated and melted before impacting the surface of the part to be coated, spreading upon impact and solidifying to build up the coating. The structure of the coating is a function of the operating conditions, from the plasma torch to the droplet impact conditions (shape, velocity, temperature, and substrate roughness). A dense or columnar structure may occur, which influences the final thermomechanical properties of the material. A full CFD simulation of the entire process is beyond reach due to limitations in the number of particles that can be simulated. Therefore, we propose a multi-step approach, consisting of CFD simulations at the droplet scale combined with a stochastic approach [1] enriched by AI at the coating scale: • Simulations of droplet impacts using the CFD code Notus [2] aim to populate a database representing the topology of various instantaneous, representative sprayed surfaces, ranging from simple to more complex configurations; • A neural network tool, trained on CFD results, aims to replace CFD simulation capacity by representing impact surfaces with sufficient accuracy. The AI tool's results can be validated and refined through additional CFD simulations; • The stochastic approach aims to represent realistic spray conditions by modeling the spatio-temporal distribution of particles, including their radius, velocity, temperature, and impact point; • The combination of the stochastic approach and the AI tool will surpass the capabilities of CFD simulations by enabling the representation of large surfaces and large numbers of particles. The PhD thesis focuses on the AI/CFD component of the project. Artificial intelligence has been used for several years to detect, segment and reconstruct the contour of the interface between two fluids in experimental images [3, 4]. Rather than segmentation or object detection in an image, the objective of the AI tool to be developed is the prediction of a final state from an initial state and relevant parameters. Given an initial condition consisting of a field of volume fractions representative of the surface state and a characterisation of the particle and its point of impact before impact, the tool must predict the new volume fraction state representative of the droplet's spreading and subsequent solidification. The work will start with a bibliography of available AI analysis tools based on image and volume fraction processing. It will also involve creating a database of droplets impacting substrates with an increasing level of topological complexity, Python programming, comparing the selected methods and 2D/3D verification of the proposed approaches. Particular attention will be paid to quantifying the reliability of predictions [5]. Please send a detailed CV, undergraduate and Master's transcripts, Master's reports and reference contacts to all the following contacts: Emmanuelle Abisset-Chavanne I2M-Bordeaux : Stéphane Glockner I2M-Bordeaux: Vincent Rat IRCER-Limoges: ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Début de la thèse : 01/09/ Funding category Other public funding Funding further details ANR



  • Talence, France Université de Bordeaux Temps plein

    Description Le développement des véhicules électriques est devenu un axe fort des constructeurs automobiles pour faire face au réchauffement climatique et satisfaire la réglementation imposant ces technologies en Europe. Cependant, l’électrification des véhicules pose plusieurs problèmes : Comment assurer une autonomie suffisante audelà des...


  • Talence, France Centre Hospitalier Universitaire De Bordeaux Temps plein

    Un établissement de santé de référence en Nouvelle-Aquitaine recherche un expert en intelligence artificielle pour concevoir et maintenir des agents d'IA destinés à améliorer les processus numériques. Vous aurez l'opportunité de travailler dans un contexte innovant et collaboratif, tout en ayant un impact direct sur la qualité des soins médicaux....


  • Talence, Nouvelle-Aquitaine, France Centre Hospitalier Universitaire De Bordeaux Temps plein

    Le poste Au sein de la Direction du Numérique (DNUM) du CHU de Bordeaux, au sein de la cellule Intégration et Développement (CID), et sous la responsabilité du responsable de la cellule, vous aurez pour mission principale :Mission principaleSous la responsabilité du responsable d'entité, le candidat sera en charge de concevoir, entraîner, déployer et...


  • Talence, France Inria Temps plein

    **Type de contrat**: CDD **Niveau de diplôme exigé**: Thèse ou équivalent **Fonction**: Post-Doctorant **Niveau d'expérience souhaité**: Jusqu'à 3 ans **A propos du centre ou de la direction fonctionnelle**: Le centre Inria de l’université de Bordeaux est un des neuf centres d’Inria en France et compte une vingtaine d’équipes de recherche....


  • Talence, France Centre Hospitalier Universitaire De Bordeaux Temps plein

    Description Au sein de la Direction du Numérique (DNUM) du CHU de Bordeaux, au sein de la cellule Intégration et Développement (CID), et sous la responsabilité du responsable de la cellule, vous aurez pour mission principale: Mission principale Sous la responsabilité du responsable d'entité, le candidat sera en charge de concevoir, entraîner,...


  • Talence, France Université de Bordeaux Temps plein

    Topic description La rhéologie des interfaces entre fluides décorées par des espèces tensioactives telles des sur-factants, des protéines ou des particules a beaucoup d'importance car elle contrôle la stabilité des mousses et des émulsions, et elle a de nombreuses applications telles que la récupération de pétrole, les systèmes...


  • Talence, France JobiJoba FR S2 Temps plein

    Le chercheur postdoctorant travaillera dans le cadre du projet Européen CARIOQA PHB, et réalisera des modélisations d'interféromètres atomiques en microgravité. Activités Il modélisera les résultats expérimentaux obtenus sur l’expérience ICE et adaptera ses modèles à l’instrument qui sera développé pour la mission CARIOQA. Son modèle...


  • Talence, France INRIA Temps plein

    Un laboratoire de recherche en IA basé à Talence, en France, cherche un ingénieur de recherche à contrat à durée déterminée. Vous participerez à des projets innovants en utilisant l'IA générative pour créer des exercices pédagogiques conformes. Un diplôme avancé en informatique, des compétences en Python et une expérience avec les systèmes...


  • Talence, France Université de Bordeaux Temps plein

    À propos de nous L’université de Bordeaux est une grande université dynamique, responsable, attentive au bien‑être de ses personnels. La rejoindre, c’est travailler dans un cadre privilégié au sein d’une communauté professionnelle particulièrement diverse et ouverte, en bénéficiant de dispositifs d’accueil et d’inclusion, de formation...


  • Talence, Nouvelle-Aquitaine, France Choisir le Service Public Temps plein

    Informations générales Organisme de rattachement CNRS   Référence UMR5298-BAPBAT-005   Date de début de diffusion /01/2026 Date de parution /01/2026 Date de fin de diffusion /02/2026 VersantFonction Publique de l'Etat CatégorieCatégorie A (cadre) Nature de l'emploiEmploi ouvert uniquement aux contractuels Domaine / MétierRecherche -...