[STAGE MASTER 2]
il y a 3 jours
Description This internship project focuses on a specific component of a broader initiative to improve the dynamic rebalancing of bike-sharing systems [1,2,3]. The problem is addressed in two stages. Based on data at the station and travel needs at a given moment t, the number of bicycles available and needed will be predicted at time t. Points of origin and destination can be grouped together to improve the performance of spatio-temporal calculations of flow gradients from the micro scale at the station to the city scale [3,4]. This approach will thus make it possible to predict more quickly the number of bicycles used on the network and at stations in order to obtain a quasi-dynamic description of the system [6,7]. In a second stage, using these new estimated input data, real-time rebalancing is deployed. A reinforcement learning algorithm is then used and trained to propose and refine the dynamic redistribution strategy for bicycles [8,9]. The advantage of this approach lies in its ability to adapt to contextual disturbances and to resolve issues on a large scale. However, this performance comes at a cost and is detrimental to ensuring the most optimised solution is achieved. This internship will focus on the first stage of the project, which concerns the prediction and modeling of bicycle availability and demand dynamics. The objective will be to design and evaluate predictive models capable of capturing both spatial and temporal dependencies in the bikeshare system. The intern will explore and compare different machine learning approaches, such as time series forecasting, graph neural networks, or spatio-temporal convolutional architectures, to estimate short-term variations in bicycle flows at the station and network levels by using clustering, for example [10]. The performance of the models will be evaluated against real operational data, and the results will serve as input for the reinforcement learning framework used in the second phase of the project . Depending on the progress and interests of the intern, additional exploration may include studying the integration of uncertainty quantification in predictions or the use of online learning methods to adapt models in real time as new data become available. The internship will provide the opportunity to gain hands-on experience in data science, spatio-temporal modeling, and urban mobility systems, while contributing to an innovative research topic with potential real-world applications. Objectives 1. Develop predictive models to estimate short-term bicycle availability and demand at both the station and network levels using spatio-temporal data. 2. Analyze and preprocess heterogeneous datasets, including trip records, station metadata, weather conditions, and temporal factors, to create robust inputs for modeling. 3. Implement and compare different machine learning approaches (e.g., time series forecasting, graph neural networks, spatio-temporal models) to capture flow dynamics in the bikeshare system. 4. Evaluate the performance and scalability of predictive algorithms under realistic conditions, using metrics relevant to operational decision-making in mobility systems. 5. Provide data-driven inputs for the reinforcement learning module, enabling the development of adaptive and real-time rebalancing strategies in the second phase of the project. 6. Integrate uncertainty quantification to assess the confidence of predictions and their impact on rebalancing decisions. 7. Explore online or incremental learning techniques to enable continuous model adaptation as new data streams become available. Expected scientific/ technical production The internship is expected to lead to both methodological and applied outcomes, including: 1. A cleaned and structured dataset integrating multimodal information (trip data, station metadata, weather, temporal and spatial context) suitable for spatio-temporal modeling. 2. A set of predictive models (baseline statistical models and advanced machine learning architectures) for short-term demand and availability forecasting in bikeshare systems. 3. A comparative performance analysis report, detailing the accuracy, robustness, and computational efficiency of the different modeling approaches. 4. A prototype or simulation tool demonstrating the integration of prediction outputs into a reinforcement learning environment for dynamic rebalancing. 5. Technical documentation and reproducible code, following open science practices, to facilitate future extensions and integration into the larger project framework. 6. Preparation of a scientific report or publication draft, presenting the methodology, results, and implications for large-scale mobility optimization. References: [1] Z. Jiang, C. Lei, and Y. Ouyang, “Optimal investment and management of shared bikes in a competitive market,” Transportation Research Part B: Methodological, vol. , pp. –, May , doi:[2] M. Dell’Amico, M. Iori, S. Novellani, and A. Subramanian, “The Bike sharing Rebalancing Problem with Stochastic Demands,” Transportation Research Part B: Methodological, vol. , pp. –, Dec. , doi: [3] C. M. Vallez, M. Castro, and D. Contreras, “Challenges and Opportunities in Dock-Based Bike-Sharing Rebalancing: A Systematic Review,” Sustainability, vol. 13, no. 4, p. , Feb. , doi: [4]Randriamanamihaga, A. N., Côme, E., Oukhellou, L., & Govaert, G. . Clustering the Vélib׳ dynamic Origin/Destination flows using a family of Poisson mixture models. , , - [5] Yunlong Feng, Roberta Costa Affonso, Marc Zolghadri, Analysis of bike sharing system by clustering: the Vélib’ case, IFAC-PapersOnLine, Volume 50, Issue 1,, Pages -, ISSN -, doi.org/10./j.ifacol..08.. [6] Lei Lin, Zhengbing He, Srinivas Peeta; Predicting station-level hourly demand in a large-scale bike-sharing network: A graph convolutional neural network approach, Transportation Research Part C: Emerging Technologies,Volume 97,,Pages -,ISSN -X, doi.org/10./j.trc..10.. [7] Wang, Xudong & Cheng, Zhanhong & Trépanier, Martin & Sun, Lijun. . Modeling bike-sharing demand using a regression model with spatially varying coefficients. [8] Liang, Jiaqi & Liu, Defeng & Jena, Sanjay & Lodi, Andrea & Vidal, Thibaut. . Dual Policy Reinforcement Learning for Real-time Rebalancing in Bike-sharing Systems. 10./arXiv... [9] Betkier, Igor & Dawid, Wojciech. . Intelligent Rebalancing: Reinforcement Learning Agent for Optimal Bike-Sharing Distribution Powered by Historical Usage Data. 10./RG.2.2... [10] Albuquerque, Vitória & Dias, Miguel & Bação, Fernando. . Machine Learning Approaches to Bike-Sharing Systems: A Systematic Literature Review. ISPRS International Journal of Geo-Information. 10. 62. 10./ijgi. Profile The Candidate's Profile The candidate should be a Master’s student (M2) or in the final year of an Engineering School program, with a background in Computational Mechanics, Applied Mathematics, or Data Science, and an interest in all three fields. She/He should have some knowledge and experience in a number of the following topics: Numerical modeling and simulation of physical or dynamical systems Machine learning or statistical data analysis Time series forecasting and spatio-temporal modeling Optimization and/or reinforcement learning methods Programming skills in Python (preferred), including libraries such as NumPy, Pandas, PyTorch, or TensorFlow Data visualization and exploratory data analysis Familiarity with version control tools (e.g., Git) and collaborative coding practices Good written and oral communication skills in English Starting date Dès que possible
-
Stage de recherche Master 2
il y a 1 semaine
Lyon, Auvergne-Rhône-Alpes, France Université Gustave Eiffel Temps pleinA propos de nousL'Université Gustave Eiffel, modèle innovant d'université rassemblant le triptyque université, écoles et organisme de recherche, dispose de plusieurs campus de formation et de recherche implantés sur le territoire national.L'établissement compte plus de 15000 étudiants et plus de 3000 personnels enseignant (e)s-chercheur(e)s,...
-
Stage Master Marketing Digital
il y a 1 semaine
Lyon, Auvergne-Rhône-Alpes, France Infinite Coiffure Temps pleinDescription de l'entreprise :Dans le cadre du développement de nos salons Infinite Hair Design, de notre Head Spa et de notre marque Iconique Cosmétiques, nous recherchons un·e stagiaire en Master Marketing Digital & Référencement, motivé·e, autonome et passionné·e par le digital.Missions :Référencement payant (SEA) : gestion, suivi et...
-
Gestionnaire de Scolarité Masters
il y a 5 jours
Lyon, France Université Lumière Lyon 2 Temps plein**À propos de nous**: Depuis sa création en 1973, l’Université Lumière Lyon 2 porte une vision forte et exigeante de l’Enseignement supérieur et de la Recherche. Elle est animée par un esprit et des valeurs qui font aussi sa marque de fabrique : humaine et humaniste, engagée et solidaire, démocratique et citoyenne. Membre fondateur de la Comue...
-
Offre d'alternance – Master 2 Gestion de Patrimoine
il y a 2 jours
Lyon, Auvergne-Rhône-Alpes, France Patrimoine Finances Conseils Temps pleinPatrimoine Finances Conseils, cabinet indépendant spécialisé en gestion de patrimoine, immobilier et protection sociale, recrute un apprenti(e) en Master 2 Gestion de Patrimoine (formation type IAE ou école de commerce).Ce que nous vous proposons :Dans un contexte de croissance continue, nous recherchons un nouveau talent motivé, désireux de...
-
Stage Juriste 2 Mois en Entreprise
il y a 2 jours
Lyon 7e, France MHM BUSINESS GROUP Temps pleinMHM Business Group dispose de deux filiales : MHM Assurances et MHM Immobilier, son siège est situé à Lyon 7ème (métro Garibaldi). Nous sommes à la recherche d’un stagiaire en Master 2 de droit, qui sera chargé de plusieurs projets liés au droit du travail, à la réforme du courtage et au RGPD. **Quelle est votre mission chez MHM Business Group...
-
Stage Juriste 2 Mois en Entreprise
il y a 2 semaines
Lyon 7e, France MHM BUSINESS GROUP Temps pleinMHM Business Group dispose de deux filiales : MHM Assurances et MHM Immobilier, son siège est situé à Lyon 7ème (métro Garibaldi). Nous sommes à la recherche d’un stagiaire en Master 2 de droit, qui sera chargé de plusieurs projets liés au droit du travail, à la réforme du courtage et au RGPD. **Quelle est votre mission chez MHM Business Group...
-
Stage Licence/master
il y a 2 jours
Lyon, France Egis Temps pleinAu sein de la Direction Technique et Méthodes, rattaché.e au Responsable du Département Offres et Documentation Commerciale, vous travaillez sur divers sujets autour du **traitement de l’information commerciale**. Vous participez ainsi aux missions suivantes: - Accompagnement à l**’utilisation de la nouvelle base de CVs** Groupe ; - ** Suivi et...
-
Offre D’alternance
il y a 1 semaine
Lyon, France Patrimoine Finances Conseils Temps plein**Patrimoine Finances Conseils**, cabinet indépendant spécialisé en **gestion de patrimoine, immobilier** et **protection sociale**, recrute un **apprenti(e)** en **Master 2 Gestion de Patrimoine** (formation type IAE ou école de commerce). Ce que nous vous proposons: Dans un contexte de croissance continue, nous recherchons un **nouveau talent...
-
Stage Communication/graphisme
il y a 2 semaines
Lyon, France Cityone - Events Temps pleinEntreprise Fondé en 1991 par Sophie Pécriaux, City One est aujourd’hui un groupe indépendant et leader des métiers de l’accueil. Poste Nous sommes à la recherche d’un(e) stagiaire talentueux(se) et motivé(e) pour rejoindre notre équipe ! ? **Profil recherché**: - Étudiant(e) en Licence ou Master avec une spécialisation en digitalisation...
-
1 Stage de Scrum Master Agile et Assurance Qualité
il y a 3 jours
Lyon, France Le Grand Lyon Temps pleinAccompagnement Agile de l'équipe : Vous serez en charge d'organiser et animer les cérémonies Scrum (daily stand-up, sprint planning, sprint review, rétrospective) et d'identifier les obstacles rencontrés par l'équipe dans la réalisation des tâches. L'objectif est d'évoluer vers une posture de Scrum Master Agile en aidant l'équipe dans l'application...