[STAGE MASTER 2]

il y a 2 semaines


Lyon, France CESI LYON Temps plein

Description This internship project focuses on a specific component of a broader initiative to improve the dynamic rebalancing of bike-sharing systems [1,2,3]. The problem is addressed in two stages. Based on data at the station and travel needs at a given moment t, the number of bicycles available and needed will be predicted at time t. Points of origin and destination can be grouped together to improve the performance of spatio-temporal calculations of flow gradients from the micro scale at the station to the city scale [3,4]. This approach will thus make it possible to predict more quickly the number of bicycles used on the network and at stations in order to obtain a quasi-dynamic description of the system [6,7]. In a second stage, using these new estimated input data, real-time rebalancing is deployed. A reinforcement learning algorithm is then used and trained to propose and refine the dynamic redistribution strategy for bicycles [8,9]. The advantage of this approach lies in its ability to adapt to contextual disturbances and to resolve issues on a large scale. However, this performance comes at a cost and is detrimental to ensuring the most optimised solution is achieved. This internship will focus on the first stage of the project, which concerns the prediction and modeling of bicycle availability and demand dynamics. The objective will be to design and evaluate predictive models capable of capturing both spatial and temporal dependencies in the bikeshare system. The intern will explore and compare different machine learning approaches, such as time series forecasting, graph neural networks, or spatio-temporal convolutional architectures, to estimate short-term variations in bicycle flows at the station and network levels by using clustering, for example [10]. The performance of the models will be evaluated against real operational data, and the results will serve as input for the reinforcement learning framework used in the second phase of the project . Depending on the progress and interests of the intern, additional exploration may include studying the integration of uncertainty quantification in predictions or the use of online learning methods to adapt models in real time as new data become available. The internship will provide the opportunity to gain hands-on experience in data science, spatio-temporal modeling, and urban mobility systems, while contributing to an innovative research topic with potential real-world applications. Objectives 1. Develop predictive models to estimate short-term bicycle availability and demand at both the station and network levels using spatio-temporal data. 2. Analyze and preprocess heterogeneous datasets, including trip records, station metadata, weather conditions, and temporal factors, to create robust inputs for modeling. 3. Implement and compare different machine learning approaches (e.g., time series forecasting, graph neural networks, spatio-temporal models) to capture flow dynamics in the bikeshare system. 4. Evaluate the performance and scalability of predictive algorithms under realistic conditions, using metrics relevant to operational decision-making in mobility systems. 5. Provide data-driven inputs for the reinforcement learning module, enabling the development of adaptive and real-time rebalancing strategies in the second phase of the project. 6. Integrate uncertainty quantification to assess the confidence of predictions and their impact on rebalancing decisions. 7. Explore online or incremental learning techniques to enable continuous model adaptation as new data streams become available. Expected scientific/ technical production The internship is expected to lead to both methodological and applied outcomes, including: 1. A cleaned and structured dataset integrating multimodal information (trip data, station metadata, weather, temporal and spatial context) suitable for spatio-temporal modeling. 2. A set of predictive models (baseline statistical models and advanced machine learning architectures) for short-term demand and availability forecasting in bikeshare systems.  3. A comparative performance analysis report, detailing the accuracy, robustness, and computational efficiency of the different modeling approaches. 4. A prototype or simulation tool demonstrating the integration of prediction outputs into a reinforcement learning environment for dynamic rebalancing. 5. Technical documentation and reproducible code, following open science practices, to facilitate future extensions and integration into the larger project framework.  6. Preparation of a scientific report or publication draft, presenting the methodology, results, and implications for large-scale mobility optimization. References: [1] Z. Jiang, C. Lei, and Y. Ouyang, “Optimal investment and management of shared bikes in a competitive market,” Transportation Research Part B: Methodological, vol. , pp. –, May , doi:[2] M. Dell’Amico, M. Iori, S. Novellani, and A. Subramanian, “The Bike sharing Rebalancing Problem with Stochastic Demands,” Transportation Research Part B: Methodological, vol. , pp. –, Dec. , doi: [3] C. M. Vallez, M. Castro, and D. Contreras, “Challenges and Opportunities in Dock-Based Bike-Sharing Rebalancing: A Systematic Review,” Sustainability, vol. 13, no. 4, p. , Feb. , doi: [4]Randriamanamihaga, A. N., Côme, E., Oukhellou, L., & Govaert, G. . Clustering the Vélib׳ dynamic Origin/Destination flows using a family of Poisson mixture models. , , - [5] Yunlong Feng, Roberta Costa Affonso, Marc Zolghadri, Analysis of bike sharing system by clustering: the Vélib’ case, IFAC-PapersOnLine, Volume 50, Issue 1,, Pages -, ISSN -, doi.org/10./j.ifacol..08.. [6] Lei Lin, Zhengbing He, Srinivas Peeta; Predicting station-level hourly demand in a large-scale bike-sharing network: A graph convolutional neural network approach, Transportation Research Part C: Emerging Technologies,Volume 97,,Pages -,ISSN -X, doi.org/10./j.trc..10.. [7] Wang, Xudong & Cheng, Zhanhong & Trépanier, Martin & Sun, Lijun. . Modeling bike-sharing demand using a regression model with spatially varying coefficients. [8] Liang, Jiaqi & Liu, Defeng & Jena, Sanjay & Lodi, Andrea & Vidal, Thibaut. . Dual Policy Reinforcement Learning for Real-time Rebalancing in Bike-sharing Systems. 10./arXiv... [9] Betkier, Igor & Dawid, Wojciech. . Intelligent Rebalancing: Reinforcement Learning Agent for Optimal Bike-Sharing Distribution Powered by Historical Usage Data. 10./RG.2.2... [10] Albuquerque, Vitória & Dias, Miguel & Bação, Fernando. . Machine Learning Approaches to Bike-Sharing Systems: A Systematic Literature Review. ISPRS International Journal of Geo-Information. 10. 62. 10./ijgi. Profile The Candidate's Profile  The candidate should be a Master’s student (M2) or in the final year of an Engineering School program, with a background in Computational Mechanics, Applied Mathematics, or Data Science, and an interest in all three fields. She/He should have some knowledge and experience in a number of the following topics: Numerical modeling and simulation of physical or dynamical systems Machine learning or statistical data analysis Time series forecasting and spatio-temporal modeling Optimization and/or reinforcement learning methods Programming skills in Python (preferred), including libraries such as NumPy, Pandas, PyTorch, or TensorFlow  Data visualization and exploratory data analysis  Familiarity with version control tools (e.g., Git) and collaborative coding practices Good written and oral communication skills in English Starting date Dès que possible


  • Stage Master 2

    il y a 1 semaine


    Lyon, Auvergne-Rhône-Alpes, France INRAE Occitanie-Toulouse Temps plein

    Retour à la liste des résultatsPrésentation INRAEL'Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE) est un établissement public de recherche rassemblant une communauté de travail de personnes, avec 272 unités de recherche, de service et expérimentales, implantées dans 18 centres sur toute la France. INRAE...

  • Stage de Master 2

    il y a 1 semaine


    Lyon, France PaRole OncO France Temps plein

    **À propos du poste**: - La pair aidance, définie comme un soutien mutuel entre des personnes qui font ou ont fait face à des expériences de vie difficiles, s’est développée depuis plusieurs années comme une composante essentielle des soins psychosociaux en oncologie. Depuis 2018, le programme PAROLE-Onco, développé au Québec, a montré son...


  • Lyon, France Université Lumière Lyon 2 Temps plein

    **À propos de nous**: Depuis sa création en 1973, l’Université Lumière Lyon 2 porte une vision forte et exigeante de l’Enseignement supérieur et de la Recherche. Elle est animée par un esprit et des valeurs qui font aussi sa marque de fabrique : humaine et humaniste, engagée et solidaire, démocratique et citoyenne. Membre fondateur de la Comue...

  • Archives - Stage 2 mois

    il y a 4 jours


    Lyon, Auvergne-Rhône-Alpes, France SYTRAL Mobilités Temps plein

    Fonction-métierArchivisteDate limite de candidature30 avril 2026Date de prise de fonction1 janvier 2026Durée2 moisL'employeurSYTRAL Mobilités21 boulevard Vivier Merle CS 6381569487 Lyon Cedex 03FranceType de structureFonction publique territorialePrésentation - Missions du posteMission :Ce stage se fera en étroite collaboration avec le Pôle juridique...

  • Offre D’alternance

    il y a 5 jours


    Lyon, France Patrimoine Finances Conseils Temps plein

    **Patrimoine Finances Conseils**, cabinet indépendant spécialisé en **gestion de patrimoine, immobilier** et **protection sociale**, recrute un **apprenti(e)** en **Master 2 Gestion de Patrimoine** (formation type IAE ou école de commerce). Ce que nous vous proposons: Dans un contexte de croissance continue, nous recherchons un **nouveau talent...


  • Lyon, France CONSULTRANS Temps plein

    Consultrans, cabinet de conseil stratégique d'entreprises, M&A et RH ; leader dans les métiers de transport et de la logistique en France et à l'international, souhaite renforcer son équipe d'étude et analyse financière en recrutant un étudiant en 1ère ou 2ème année de master finance. En tant que stagiaire en finance chez CONSULTRANS, vous serez...


  • Lyon, France ARSENAL Pro Temps plein

    Stage de 2 mois **Qui sommes nous**: ARSENAL PRO est un distributeur de matériel professionnel dans le domaine de l'armement. Nous fournissons aux utilisateurs d'armes civils et professionnels du matériel de haute qualité, sélectionné et fabriqué avec minutie. Nous fournissons aux opérateurs de tir les outils pour leurs loisirs ou leurs...


  • Lyon, France I.V.E Distribution Temps plein

    Durée : 2 mois Date de début possible : entre le 3 et 12 avril ou à partir du 19 Juin. Gratification nette mensuelle : 550€ à 620€ **VOTRE STAGE - BUSINESS DEVELOPER - B to C** Rattaché(e) à votre responsable commercial, vous avez pour principale mission de développer votre chiffre d’affaires en commercialisant des jeux et jouets Made in France...

  • Stage Juriste en Droit Social

    il y a 2 semaines


    Lyon, France OXANCE Temps plein

    **Donnez du sens à votre carrière, rejoignez Oxance !** Acteur majeur de la santé en France grâce à son réseau de 135 établissements répartis sur 18 départements, Oxance, entreprise privée à but non lucratif, développe ses activités grâce à ses 2 000 collaborateurs engagés en faveur d’une offre de soins accessible et performante pour...

  • Stage 2 Mois

    il y a 2 semaines


    Lyon, France VeryMountain Temps plein

    Poste : Création de contenu H/F Profil : étudiant(e) en communication & marketing Lieu du Stage : Lyon + Télétravail 1 jours/semaine Quand : À partir de juillet **Enrichis ton portfolio avec du contenu qui fait rêver et voyager dans nos plus belles stations de montagne (articles de blog et publications sur les réseaux sociaux de la marque).** **Qui...