Advancing System-level Prognostics with Multimodal Data Integration and Uncertainty Quantification

il y a 1 semaine


Tarbes, France Khanh Nguyen Temps plein

**Advancing System-Level Prognostics with Multimodal Data Integration and Uncertainty Quantification**:

- Réf **ABG-128835**
- Sujet de Thèse
- 24/02/2025
- Financement public/privé
- Khanh Nguyen
- Lieu de travail- Tarbes - Occitanie - France
- Intitulé du sujet- Advancing System-Level Prognostics with Multimodal Data Integration and Uncertainty Quantification
- Champs scientifiques- Sciences de l’ingénieur
- Informatique
- Mots clés- Prognostics; graph neural network; multimodal learning; complex system

**Description du sujet**:
**Advancing System-Level Prognostics with Multimodal Data Integration and Uncertainty Quantification**

**1. Scientific context**

One of the primary challenges in SLP lies in effectively modeling the dependencies and interactions among system components, which significantly influence degradation and failure modes. Conventional methods, such as model-based methods, have addressed these dependencies by leveraging physical prior knowledge of system dynamics. For example, the Inoperability Input-Output Model (IIM) integrates mission profile effects and online parameter estimation, offering dynamic RUL predictions for complex systems like the Tennessee Eastman Process [3]. Similarly, state-space models with diffusion coefficient matrices effectively capture the coupling effects of degradation in multi-component systems, employing techniques like Kalman filtering and Monte Carlo simulations [4]. However, as systems grow increasingly and sensor data become more high-dimensional, these models often face scalability challenges.

To complement model-based methods, data-driven approaches have gained prominence for their ability to integrate diverse data sources. Bayesian Networks (BNs), for example, provide a robust framework for modeling probabilistic relationships while incorporating historical data, real-time sensor inputs, and expert knowledge. This capability is crucial for evaluating the health of complex systems where interactions between components play a critical role [5]. However, BNs also face limitations, including reliance on high-quality historical data, computational complexity, and scalability issues in handling intricate systems with numerous variables.

To address the limitations of model-based and data-driven methods, hybrid approaches have emerged as a promising solution by leveraging the strengths of both. For instance, Eker _et al._ [6] emphasize that hybrid methodologies enhance robustness in prognostics by accommodating variability and uncertainties in real-world operational conditions. Similarly, Li _et al._ [7] highlight the integration of deep learning algorithms, such as convolutional neural networks, with physics-based models to improve RUL estimation. However, combining data-driven and model-based methods requires meticulous calibration and validation to ensure the hybrid framework accurately captures system dynamics and degradations. Another critical gap is the lack of comprehensive uncertainty quantification at the system level. While Nguyen _et al._ [8] proposed a probabilistic deep learning methodology combining probabilistic models with deep recurrent neural networks to predict RUL distributions of components and derive system-level reliability, their study assumes independent component degradation and does not account for interactions. This simplification limits the model’s applicability to systems with complex interdependencies, underscoring the need for further research to address these limitations in hybrid prognostic frameworks.

**2. Thesis objectives**

This thesis aims to address the critical challenges in SLP by developing **advanced hybrid approaches** that allow enhancing the robustness, scalability, and reliability of prognostics algorithms, ensuring their effectiveness and adaptability in increasingly intricate engineering systems and dynamic industrial environments. Building on the foundation of prior research, the proposed methods will introduce transformative strategies for_ robust data integration, efficient modeling of component interactions, and rigorous uncertainty management_. Ultimately, the goal is to establish more accurate and scalable prognostic solutions capable of adapting to increasingly complex engineering systems and dynamic industrial environments.

In summary, the outcomes of this thesis will **primarily contribute to advancing the theoretical foundation** of hybrid prognostic modeling by bridging gaps between data-driven and physics-based approaches. This work aims to establish new paradigms in the scientific understanding of system-level prognostics and to contribute significantly to the broader research community.

**References**

[1] Khanh T.P. Nguyen, Kamal Medjaher, Do T. Tran (2023). A review of artificial intelligence methods for engineering prognostics and health management with implementation guidelines. Artificial Intelligence Review, Volume: 56, Issue: 4, Pages: 3659- 3709.

[2] Ferhat Tamssaouet, Khanh T.P. N



  • Tarbes, France Segula Technologies Temps plein

    **Description de l'entreprise** Accélérez votre carrière au sein d’un groupe d’ingénierie mondial à forte croissance. Chez SEGULA Technologies, vous travaillerez sur des projets passionnants et contribuerez à façonner l’avenir au sein d’une entreprise pour qui l’innovation est indissociable de l’ingénierie. Intelligence artificielle,...


  • Tarbes, France Daher Temps plein

    Nous recherchons notre futur(e) International Internship Experience in Aircraft Industry (All gender) Type de contrat Présentation de l'emploi Who are we? Daher is an aircraft manufacturer and an industry and service equipment supplier. Daher asserts its leadership in three main businesses: aircraft manufacturing, aerospace equipment and systems,...

  • MEDECIN DU TRAVAIL

    il y a 7 jours


    Tarbes, France DAHER Temps plein

    MEDECIN DU TRAVAIL - F / HPermanentJob title of the line manager : Employee Relations Director Job title of the functional manager (if any) : Responsibilities : The occupational physician plays an exclusively preventive role : improving living and working conditions, preventing any deterioration in the health of workers by supervising their occupational...


  • Tarbes, France Daher Temps plein

    Intitulé de poste INTERNATIONAL INTERNSHIP EXPERIENCE IN THE AIRCRAFT INDUSTRY (All gender) Synthèse du poste DAHER and the GAMA (General Aviation Manufacturers Association) offer an internship opportunity for two college students aiming at discovering the aviation sector, exploring its professions, and gaining valuable first experience with a major...


  • Tarbes, France IT Link Temps plein

    À propos de - IT Link Engagé.e.s pour l'égalité des chances, nous pensons que la diversité est une richesse. Nous savons respecter, apprécier et valoriser les différences de chacun.e : ce sont vos qualités humaines qui seront considérées. **“Connect and Create for Change”... with us !** IT Link, expert des systèmes connectés Chez IT...


  • Tarbes, Occitanie, France Alstom Temps plein

    À la tête des entreprises qui s'engagent vers un avenir plus vert,Alstom développe et commercialise des solutions de mobilité qui apportent les fondements durables pour l'avenir des transports. Notre portefeuille de produits s'étend des trains à grande vitesse, métros, monorails et tramways jusqu'aux systèmes intégrés, services sur mesure,...


  • Tarbes, France Daher LLC Temps plein

    **Looking**We are looking for our futureStage – Développement d’un nouvel outil de chiffrage d’offre (H/F)Contract typeInternAs an aircraft manufacturer, industrialist, industrial service provider and logistician, Daher currently has approximately 14,000 employees and achieved a revenue of 1.8 billion euros in 2024. With its family ownership, Daher...


  • Tarbes, France Daher LLC Temps plein

    **Looking**We are looking for our futureStage – Base de données des configurations logicielles avion - H/FContract typeInternAs an aircraft manufacturer, industrialist, industrial service provider and logistician, Daher currently has approximately 14,000 employees and achieved a revenue of 1.8 billion euros in 2024. With its family ownership, Daher has...


  • Tarbes, France FITECO Temps plein

    Avec votre équipe voyez la vie en rose #Chez Fiteco Tarbes ! Afin de renforcer notre pôle expertise comptable, nous recherchons notre Responsable d'équipe - Data Superviseur H/F. #ChezFITECO Tarbes, vous faites partie d'une équipe dynamique portée par des collaborateurs qui vous accompagnent et vous impliquent dans chaque projet. Votre contribution est...

  • Analyste de Données

    il y a 4 jours


    Tarbes, France TARMAC Aerosave Temps plein

    FIXED-TERM CONTRACT Analyste de données H/F 20 Juin 2025 | Réf. : FR-DataAnalyst CDD | Tarbes **Nous recherchons un analyste de données H/F, pour un CDD de 12 mois sur notre site de Tarbes (65).** Sous la direction du Master Data Manager, l’analyste de données participe à la structuration, à la migration et à la fiabilisation des données dans...