Internship - High Precision Interpretable Machine

il y a 1 semaine


Saclay, France CEA Temps plein

Position description

**Category**:

- Mathematics, information, scientific, software

**Contract**:

- Internship

**Job title**:

- INTERNSHIP - High Precision Interpretable Machine Learning - 6 months - Saclay H/F

**Subject**:

- Interpretability and High Precision Training for Neural Networks

**Contract duration (months)**:

- 6

**Job description**:

- At the_ Institute of Applied Sciences and Simulation for Low-Carbon Energies_ (ISAS) of the CEA, we focus on research and innovation in **analytical sciences**. As data analysis plays a pivotal role, we are interested in methodological advancements in **statistics**, **mathematics** and **computer science**, for instance, via the development of state-of-the-art AI models, adapted to our needs.-
- The internship targets the exploration of the **state-of-the-art** and the development of **optimisation techniques** for neural networks. The objective is to find possible ways to increase precision and interpretability of deep learning algorithms. In particular, we shall focus on the following tasks:

- ** critical review** the state-of-the-art in neural network optimisation to better understand the critical aspects playing a role in neural network precision;
- analysis of **second order** neural network optimisers for reliable and interpretable machine learning in physics;
- generalisation of some proposed techniques to enhance precision in neural network predictions.- The internship will be a collaboration between the DES (_Direction of Energies_) and the DRF (_Direction of Fundamental Research_) of CEA. The intern will be hosted by the _Laboratory of Artificial Intelligence and Data Science_ (LIAD) at the DES, in collaboration with the Institute of Theoretical Physics (IPHT).**Methods / Means**:

- optimisation, deep learning, machine learning, AI, physics

**Applicant Profile**:

- We look for a passionate student at the end of their studies (e.g. the French M2 level), with a good understanding of **machine learning** and **coding techniques**. Good knowledge of any **deep learning framework** (PyTorch, JAX, Tensorflow) in Python is mandatory, as well as abiding to good object
- oriented coding practices. A basic understanding of physics (statistical mechanics) is appreciated and considered a plus, though not necessary.Position location

**Site**:

- Saclay

**Job location**:

- France, Ile-de-France, Essonne (91)

**Location**:

- Saclay

**Languages**:

- French (Fluent)
- English (Intermediate)

Requester

**Position start date**:

- 01/01/2025

General information

**Organisation**:
The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas:

- defence and security,
- nuclear energy (fission and fusion),
- technological research for industry,
- fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France

**Reference **:2024-34335**Description de l'unité**:

- Notre Service dédié au Génie Logiciel pour la Simulation (SGLS) réalise et maintient des plateformes génériques, pérennes et open source dans le but:

- d'exploiter les codes de calculs à l'aide d'outils de mise en données, prétraitements et postraitements, standards ou spécifiques;
- de fournir aux physiciens les méthodes et outils leur permettant d'optimiser leurs conceptions et de traiter les incertitudes de leurs études de sureté.

Le Laboratoire d'Intelligence Artificielle et de science des Données (autrement nommé le LIAD) réalise et maintient une plateforme générique, pérenne et open source pour fournir à nos physiciens des méthodes et outils leur permettant d'améliorer leurs modèles, d'optimiser leurs conceptions et de traiter les incertitudes de leurs études : la plateforme Uranie.

Uranie ? Oui, notre plateforme permet dans l'approche VVQI (Validation, Vérification et Quantification d'Incertitude) de créer des plans d'expériences adaptés aux besoins d'une analyse de sensibilité, d'un problème d'optimisation ou de la génération d'une base d'apprentissage ou de test pour un modèle de substitution.

Uranie permet de piloter le lancement des codes ou fonctions de manière séquentielle ou avec différentes approches de parallélisation.



  • Saclay, France CEA Temps plein

    Position description **Category**: - Mathematics, information, scientific, software **Contract**: - Internship **Job title**: - INTERNSHIP - Machine Learning for Material Science - 6 months - Saclay H/F **Subject**: - Optimization Schemes and Machine Learning for Structural Design Applications in Additive Manufacturing **Contract duration...


  • Saclay, France CEA Temps plein

    Learning to focus: Physics‑Informed Deep Learning for Super‑Resolved Ultrasonic Phased-Array Imaging H/F 1 week ago – Be among the first 25 applicants. Category Category: Mathematics, information, scientific, software Position description Internship aiming to design a physics‑informed deep learning framework for super‑resolved ultrasonic imaging,...


  • Saclay, Île-de-France CEA Temps plein

    Position descriptionCategoryMathematics, information, scientific, softwareContractInternshipJob titleLearning to focus: Physics-Informed Deep Learning for Super-Resolved Ultrasonic Phased-Array Imaging H/FSubjectThe internship aims to design a physics-informed deep learning framework for super-resolved ultrasonic imaging, extending the Total Focusing Method...

  • Internship position H/F

    il y a 6 jours


    Saclay, Île-de-France CEA Temps plein

    Although formal verification is essential for ensuring the safety and security of software, it remains difficult to deploy and use effectively by non-experts due to its steep learning curve. Recent advances in large language models (LLMs) have demonstrated remarkable abilities in code understanding, synthesis, and reasoning. These advances open promising...


  • Saclay, France CEA Temps plein

    Formal methodology for the exploration and the evaluation of complex critical SW architecture M/F Category: Mathematics, information, scientific, software Contract: Internship (6 months) Position description: The internship aims to implement and improve the formalization and implementation of an iterative methodology for critical embedded software...


  • Saclay, France CEA Temps plein

    Orchestration et planification hiérarchique de LLMs pour la conception et la simulation de systèmes H/F Mathématiques, information scientifique, logiciel Intitulé de l'offre Orchestration et planification hiérarchique de LLMs pour la conception et la simulation de systèmes H/F Sujet de stage Nous proposons un stage dans le domaine de l'IA...


  • Saclay, France CEA Temps plein

    Design of a Reinforcement Learning–Driven Scheduler for Efficient and Frugal Container Orchestration H/F Position title: Design of a Reinforcement Learning–Driven Scheduler for Efficient and Frugal Container Orchestration H/F Category: Engineering science Contract type: Internship (6 months) Location: Saclay, Palaiseau, France, Île-de-France Objective:...


  • Saclay, France CEA Temps plein

    Runtime Root-Cause Analysis for Intelligent Robots via Causal AI Techniques H/F Contract: Internship (6 months) Location: Saclay, France (Palaiseau, Essonne) Industry: Research Services Employment Type: Internship – Seniority level: Not applicable Position Description Root‑Cause Analysis (RCA) identifies the fundamental cause of failures, not just...


  • Saclay, Île-de-France CEA Temps plein

    Position descriptionCategoryMathematics, information, scientific, softwareContractInternshipJob titleRuntime Root-Cause Analysis for Intelligent Robots via Causal AI Techniques H/FSubjectRoot-Cause Analysis (RCA) identifies the fundamental cause of failures, not just symptoms. Crucial for robots in uncontrolled environments, RCA distinguishes symptoms from...


  • Saclay, Île-de-France CEA Temps plein

    This post-doctoral position is part of a collaboration between LIAD (Laboratory of Artificial Intelligence and Data Sciences, CEA Saclay), the NRX Nanostructures and X-Rays Team at CEA Grenoble, the University of Lorraine, CentraleSupélec, and the European Synchrotron (ESRF). It is jointly supervised by:Aurore Lomet, Research Engineer in AI at LIAD, CEA...