Research Internship in Learning Dynamic Force-Based Locomotion Skills for Legged Robots

il y a 5 jours


VillerslèsNancy, Grand Est, France Inria Temps plein

Le descriptif de l'offre ci-dessous est en Anglais

Type de contrat : Convention de stage

Niveau de diplôme exigé : Bac + 4 ou équivalent

Fonction : Stagiaire de la recherche

Contexte et atouts du poste

Context and funding:

This position is funded by the PEPR O2R AS3 project.

Within this framework, the HUCEBOT team is developing multimodal strategies for online control and adaptation of dynamic legged robot platforms. This project investigates learning dynamic force-based locomotion skills in legged robots. Current locomotion frameworks often emphasize position-based control rather than the underlying force interactions that govern stability and agility. By focusing on learning time-varying force profiles, the proposed work aims to achieve efficient, adaptive, and dynamically balanced locomotion behaviors, particularly for jumping and other impulsive tasks.

About the team:

The candidate will join the Human Centered Robotics team (HUCEBOT) in the Inria Center of the University of Lorraine in Nancy, France.

The team HUCEBOT develops control, learning, and interaction skills of human-centered robots, such as humanoid, mobile manipulators and exoskeletons. The team develops learning and control algorithms for teleoperated / supervised / autonomous robots, involved in complex manipulation tasks in man-made environments. It also develops AI-based control for wearable exoskeletons designed to assist humans at work, drones and quadrupeds to explore complex environments. The team has excellent robotics facilities, including several humanoid robots (Talos, iCub, G1), manipulators, drones, passive and active exoskeletons, wearable sensors, force plates etc. Its laboratory has a 3D printing facility and a mechatronic workshop for prototyping and maintenance, and a motion capture room with Qualisys and Xsens sensors.

The team consists of many research scientists, postdocs, PhD and has the support of 1 software and 1 mechatronics engineer. The team is international - English and French speaking. French is not required, although free French classes are available in the institute for non-French speakers.

About the laboratory and Nancy:

The Inria Center of the University of Lorraine, is co-located with the Loria laboratory, in the Science and Technology Campus of the University of Lorraine (Nancy, France), next to the Botanical Gardens, at 20 minutes by public transportation or bike from the Nancy train station and City Center. Several student residences and facilities are at walking distance. Nancy is a University town, with a high quality of life and a vibrant student, Erasmus and expat community. Life is Nancy is very affordable compared to Paris, it is easy to find a student residence or apartment. Team members can also access to SUAPS, the University's sports facilities.

About Nancy in France:

Nancy is the capital of the Grand Est region in France. It is well connected by train to Paris (90 min), Strasbourg (90 min), Luxembourg and Germany. There are direct trains from Nancy to the Paris airport CDG and the Luxembourg airport LUX.

The region around Nancy is ideal for outdoor activities: there are many country trails, long bike trails, forests, mountains, lakes, ski in winter too.

Mission confiée

This project investigates learning dynamic force-based locomotion skills in legged robots. Current locomotion frameworks often emphasize position-based control rather than the underlying force interactions that govern stability and agility. By focusing on learning time-varying force profiles, the proposed work aims to achieve efficient, adaptive, and dynamically balanced locomotion behaviors, particularly for jumping and other impulsive tasks.

The internship is for a 4 to 6 months period and must terminate before mid-July.

The candidate will collaborate with Guillaume Bellegarda (researcher) and Serena Ivaldi (researcher).

Principales activités
  • Review state-of-the-art in force and impedance-based control for legged robots.
  • Develop learning-based frameworks for discovering optimal force profiles in legged robots (simulation).
  • Generalize learned behaviors to different morphologies and terrains (simulation).
  • Deploy controllers in hardware experiments on the Unitree G1 (and possibly other platforms).
  • Analyze results and write report.
Compétences
  • Technical skills:
    • Background in robotics, control, machine learning.
  • Excellent skills and/or experience with simulation frameworks (i.e. Isaac, MuJoCo), reinforcement learning, and force/impedance control
  • Excellent skills in Python, C++, ROS
  • Interest and preferably experience in force control and legged robots
  • Soft skills:
    • Excellent communication skills at work, and ability to report progress
  • Not afraid of challenging projects
  • Rigor and intellectual honesty
  • Curiosity and desire to learn
  • Practical mindset and ability to develop robust and reliable solutions
  • Autonomy and organizational skills
  • Love working in a multi-cultural environment
  • Team player
Avantages
  • Subsidized meals
  • Partial reimbursement of public transport costs
  • Leave: 7 weeks of annual leave + 10 extra days off due to RTT (statutory reduction in working hours) + possibility of exceptional leave (sick children, moving home, etc.)
  • Possibility of teleworking (after 6 months of employment) and flexible organization of working hours
  • Professional equipment available (videoconferencing, loan of computer equipment, etc.)
  • Social, cultural and sports events and activities
  • Access to vocational training
  • Social security coverage
Rémunération

€4.35/hour

Informations générales
  • Thème/Domaine : Robotique et environnements intelligents

Calcul Scientifique (BAP E)
- Ville : Villers lès Nancy
- Centre Inria : Centre Inria de l'Université de Lorraine
- Date de prise de fonction souhaitée :
- Durée de contrat : 5 mois
- Date limite pour postuler :

Attention: Les candidatures doivent être déposées en ligne sur le site Inria. Le traitement des candidatures adressées par d'autres canaux n'est pas garanti.

Consignes pour postuler

Sécurité défense :

Ce poste est susceptible d'être affecté dans une zone à régime restrictif (ZRR), telle que définie dans le décret n° relatif à la protection du potentiel scientifique et technique de la nation (PPST). L'autorisation d'accès à une zone est délivrée par le chef d'établissement, après avis ministériel favorable, tel que défini dans l'arrêté du 03 juillet 2012, relatif à la PPST. Un avis ministériel défavorable pour un poste affecté dans une ZRR aurait pour conséquence l'annulation du recrutement.

Politique de recrutement :

Dans le cadre de sa politique diversité, tous les postes Inria sont accessibles aux personnes en situation de handicap.

Contacts
  • Équipe Inria : HUCEBOT
  • Recruteur :

Bellegarda Guillaume /

L'essentiel pour réussir

Excellent communication in English, French is a plus.

Ideal profile: Bachelor / Master Degree studies in Robotics, Control, Engineering, Bio-engineering, or relevant fields.

*** IMPORTANT ***

We will only consider applications with the following attachments (add them in the PDF when completing the application):

1) Transcripts of your University classes (Bachelor, Master, Engineering School...)

2) Your CV should mention all the places where you studied, starting from High School, so please list High School, University, Bachelor/Master, College, Engineering School, Classe Preparatoires, etc. Please mention city and country.

A propos d'Inria

Inria est l'institut national de recherche dédié aux sciences et technologies du numérique. Il emploie 2600 personnes. Ses 215 équipes-projets agiles, en général communes avec des partenaires académiques, impliquent plus de 3900 scientifiques pour relever les défis du numérique, souvent à l'interface d'autres disciplines. L'institut fait appel à de nombreux talents dans plus d'une quarantaine de métiers différents. 900 personnels d'appui à la recherche et à l'innovation contribuent à faire émerger et grandir des projets scientifiques ou entrepreneuriaux qui impactent le monde. Inria travaille avec de nombreuses entreprises et a accompagné la création de plus de 200 start-up. L'institut s'efforce ainsi de répondre aux enjeux de la transformation numérique de la science, de la société et de l'économie.



  • Villers-lès-Nancy, Grand Est, France Inria Temps plein

    Type de contrat : Convention de stageNiveau de diplôme exigé : Bac + 4 ou équivalentFonction : Stagiaire de la rechercheContexte et atouts du posteContext and funding:This position is funded by the euROBIN project.Within this framework, the HUCEBOT team is developing multimodal strategies for online control and adaptation of dynamic legged robot...

  • Master internship

    il y a 4 jours


    Nancy, Grand Est, France Loria Temps plein

    Master 2 Research Internship – Acoustic Aware Speech Enhancement in Distributed Microphone ArraysLab:Loria / Inria Nancy – Grand Est, Nancy )Supervisors:Romain Serizel (LORIA), François Effa (LORIA)Start:Spring 2026Duration:6 MonthsMotivations and contextThis internship takes place within the ANR-DFG project AWESOME. The project involves researchers...


  • Villers-lès-Nancy, Grand Est, France Inria Temps plein

    Le descriptif de l'offre ci-dessous est en AnglaisType de contrat : CDDNiveau de diplôme exigé : Thèse ou équivalentFonction : Post-DoctorantNiveau d'expérience souhaité : De 3 à 5 ansContexte et atouts du posteThis 2-year postdoctoral position is funded by the prestigious Programme Inria Quadrant (PIQ) for the project DynaNova, which aims to advance...


  • Villers-lès-Nancy, Grand Est, France Inria Temps plein

    Le descriptif de l'offre ci-dessous est en AnglaisType de contrat : Convention de stageNiveau de diplôme exigé : Bac + 4 ou équivalentFonction : Stagiaire de la rechercheContexte et atouts du posteThis master internship is part of the REAVISE project: "Robust and Efficient Deep Learning based Audiovisual Speech Enhancement" funded by the French National...


  • Nancy, Grand Est, France Institut Jean Lamour (IJL) Temps plein

    Masters Internship in Computational Materials Science:AI-Driven Neural Operators for Modeling of Phase Transformations in Materials Location: Institut Jean Lamour, Nancy, France Duration: 6 months, starting in early 2026 Application deadline: 30 November 2025 Ideal Candidate: excellent student of physics, applied mathematics, mechanical/chemical/process...


  • Maizières-lès-Metz, Grand Est, France ArcelorMittal Temps plein

    ArcelorMittal is the world's largest steel producer. We use the most innovative technologies to create the steels tomorrow's world will be made of. Every day over 125,000 of our talented people, located in over 60 countries, push the boundaries of digitalization, and use advanced technologies to create a stronger, faster, and smarter world. To help make this...


  • Maizières-lès-Metz, Grand Est, France ArcelorMittal Temps plein

    DescriptionArcelorMittal is the world's largest steel producer. We use the most innovative technologies to create the steels tomorrow's world will be made of. Every day over 125,000 of our talented people, located in over 60 countries, push the boundaries of digitalization, and use advanced technologies to create a stronger, faster, and smarter world. To...


  • Maizières-lès-Metz, Grand Est, France ArcelorMittal Temps plein

    ArcelorMittal is the world's largest steel producer. We use the most innovative technologies to create the steels tomorrow's world will be made of. Every day over 125,000 of our talented people, located in over 60 countries, push the boundaries of digitalization, and use advanced technologies to create a stronger, faster, and smarter world. To help make this...


  • Maizières-lès-Metz, Grand Est, France ArcelorMittal Temps plein

    DescriptionArcelorMittal is the world's largest steel producer. We use the most innovative technologies to create the steels tomorrow's world will be made of. Every day over 125,000 of our talented people, located in over 60 countries, push the boundaries of digitalization, and use advanced technologies to create a stronger, faster, and smarter world. To...


  • Nancy, Grand Est, France Centre de Recherche en Automatique de Nancy ( CRAN ) Temps plein

    How to ensure sufficient data richness for the estimation of stochastic dynamical systems in finite time?Réf ABG-134446Sujet de Thèse18/11/2025Contrat doctoralCentre de Recherche en Automatique de Nancy ( CRAN )Lieu de travailNancy - Grand Est - FranceIntitulé du sujetHow to ensure sufficient data richness for the estimation of stochastic dynamical...