Leveraging Domain Adaptation in Unsupervised Federated Learning

il y a 2 semaines


Rouen, Normandie, France University of Rouen Normandy Temps plein
Leveraging Domain Adaptation in Unsupervised Federated Learning

Réf ABG-134073

Stage master 2 / Ingénieur

Durée 6 mois

Salaire net mensuel 630

28/10/2025

University of Rouen Normandy

Lieu de travail

Rouen Normandie France

Champs scientifiques

  • Science de la donnée (stockage, sécurité, mesure, analyse)
  • Mathématiques

Mots clés

Federated Learning, Source-Free Domain Adaptation, Class Imbalance, Unsupervised Learning

Date limite de candidature

31/01/2026

Établissement recruteur

The internship will take place at the LITIS laboratory, which has 160 members—including PhD students—and seven teams covering a broad range of fundamental and applied research. The intern will join the "Apprentissage" team, consisting of 18 faculty members from Rouen University and INSA and approximately 20 PhD students. The team focuses on machine learning and pattern recognition for interpreting diverse data such as signals, images, and text.

Description

Context

Federated learning (FL) enables models to learn from distributed datasets across diverse clients (e.g., edge devices, hospitals, or industrial sites) while maintaining privacy [1]. A major challenge in supervised FL is statistical variability, which causes client distribution shifts—differences in data distributions across clients [2]. Additionally, many clients contain unlabeled data that remain unused due to annotation costs, inconsistent labeling protocols, and model updates. As a result, FL with unlabeled data has gained attention, with approaches that take advantage of clustering techniques to correct client shifts [3,4].

Since domain shifts in Domain Adaptation (DA) are analogous to client shifts in federated learning, federated domain adaptation has naturally emerged to transfer methodological advances from DA to address distribution shifts [5]. DA seeks to learn a domain-invariant feature space between labeled source and target domains, whereas unsupervised domain adaptation handles the more challenging case where target data are unlabeled [6]. Recent studies have incorporated DA techniques into FL, primarily in centralized settings (e.g., at the server) to address evolving distribution shifts [7]. Among these methods, Source-Free Domain Adaptation (SFDA) presents a promising direction, as it enables a client to share a trained model with another party, allowing the recipient to perform unsupervised adaptation using their own data in conjunction with the shared model [8].

Finally, performance degradation and poor generalization are further exacerbated by class imbalance in unlabeled data, where majority classes dominate while minority classes are underrepresented. In supervised FL, this issue can be mitigated by estimating clients' class distributions and applying loss-based adjustments [9]. However, such strategies are not directly applicable in unsupervised settings, where class labels are unavailable.

Objectives

The main objectives of this internship are as follows: first, to get familiar with an already developed federated learning framework that includes the privacy-preserving Source-Free Domain Adaptation (SFDA) approach. Second, to study the effect of class imbalance on performance in federated learning. Third, to investigate methods used in supervised domain adaptation and federated learning to address class imbalance [1,2]. Finally, based on the insights from the previous objectives, the candidate will propose new strategies.

The experiments will be conducted on publicly available time-series datasets, including sensor data from accelerometers, gyroscopes, and body sensors collected from multiple subjects (e.g., Human Activity Recognition and EEG signal datasets). Additionally, experiments may be performed on well-known image classification datasets to further evaluate the proposed approach.

Profil

We are looking for highly motivated candidates currently enrolled in a Master's degree or engineering program in applied mathematics or computer science. Candidates should have a solid background in machine learning and be comfortable with software development, particularly in Python. No prior experience in domain adaptation or federated learning is required. A good level of English is strongly recommended.

Prise de fonction

01/02/2026



  • Rouen, Normandie, France TAngraFX Temps plein

    About UsTAngraFX is at the forefront of blending cutting-edge computational physics with artificial intelligence to solve the world's most complex engineering and scientific challenges. From designing next-generation materials and energy systems to pushing the boundaries of climate science and aerospace, we use massive computing power and innovative...


  • Rouen, Normandie, France Cross Border Talents Temps plein

    Work & Travel Opportunity in Lisbon Content Moderator (French Speakers)Are you passionate about social media and online communities? Do you want to live an international experience in Lisbon while learning about compliance, content policies, and digital media legislation for one of the worlds leading Big Tech companies?This is your chance to combine work...


  • Rouen, Normandie, France Walter Learning Temps plein

    L'école Walter Learning conçoit, produit et dispense des formations en ligne à destination des professionnels et des personnes qui cherchent à construire leur avenir professionnel.Alliant création de contenus pédagogiques et expertise technologique, nous produisons nos formations en interne avec des spécialistes reconnus, et les diffusons sur notre...

  • Neuropsychologue H/F

    il y a 4 jours


    Rouen, Normandie, France Select-in Temps plein

    Présentation de la société Présentation : Cabinet de recrutement et d'approche directe au rayonnement national, SELECT-IN accompagne associations, fondations et collectivités sur leurs recrutements de profils cadres et experts métiers.SELECT-IN accompagne son client, acteur reconnu du secteur médico-social, dans le recrutement d'un Neuropsychologue...

  • Management Trainee

    il y a 7 jours


    Rouen, Normandie, France Nestlé Temps plein

    Nestlé #SparkTheNext Leaders Program - Management Trainee 2026Job DescriptionNestlé #SparkTheNext Leaders Program (NSLP) – Management Trainee 2026 IS NOW OPENNestlé #SparktheNext Leaders Program – Management Trainee, is a fast-track development initiative designed to nurture and empower future leaders. This program offers a unique opportunity to...

  • Management Trainee

    il y a 7 jours


    Rouen, Normandie, France Nestlé Temps plein

    Nestlé #SparkTheNext Leaders Program - Management Trainee 2026Job DescriptionNestlé #SparkTheNext Leaders Program (NSLP) – Management Trainee 2026 IS NOW OPENNestlé #SparktheNext Leaders Program – Management Trainee, is a fast-track development initiative designed to nurture and empower future leaders. This program offers a unique opportunity to...

  • BI Developer

    il y a 6 jours


    Rouen, Normandie, France Agoda Temps plein

    About AgodaAt Agoda, we bridge the world through travel. Our story began in 2005, when two lifelong friends and entrepreneurs, driven by their passion for travel, launched Agoda to make it easier for everyone to explore the world.Today, we are part of Booking Holdings [NASDAQ: BKNG], with a diverse team of over 7,000 people from 90 countries, working...


  • Rouen, Normandie, France CHU de Rouen Temps plein

    Nous recherchons un Ingénieur Conducteur d'opérations de travaux H/F pour rejoindre notre établissement.Le conducteur des travaux participe à la mise en œuvre de la politique d'investissement et conduit les projets en cours et à venir. Il travaille en lien avec les équipes de la maintenance et des travaux d'exploitation et du bureau d'études.Il...

  • STAGE Fin d'études

    il y a 7 jours


    Rouen, Normandie, France Bouygues Construction Temps plein

    Bouygues Bâtiment Grand Ouest est implantée en Bretagne, Pays de la Loire, Normandie et Picardie. Elle déploie son savoir-faire en conception, construction et rénovation dans les domaines de l'habitat, des ouvrages fonctionnels, des opérations multi-produits, de l'industrie et de l'environnement sur tout le territoire. Nous sommes engagés en faveur de...


  • Rouen, Normandie, France VINCI Temps plein

    Rejoignez UBBAK à Le Havre, le réseau de VINCI Energies dédié aux technologies du froid, chaud et traitement d'air pour les applications process, et participez à la révolution du froid à haut degré. Nous accompagnons nos clients dans la réalisation de leurs projets de réfrigération industrielle, en proposant des solutions techniques innovantes,...