Machine Learning Intern Stochastic Gradient Descent
il y a 1 semaine
Nova In Silico is a health tech company that develops an in silico clinical trial platform jinkō to simulate drug efficacy and optimize clinical development using virtual patients and disease modeling. As an innovative company, we offer a dynamic work environment distinct from larger, established organizations. Interns will gain significant responsibilities and benefit from a steep learning curve, supported by a highly motivated team. Learn more at www.novainsilico.ai .KeywordsExpectation Maximization, Gradient Descent, Non-Linear Mixed-Effects Model, Surrogate Model, PyTorchBackgroundQuantitative Systems Pharmacology and its ChallengesQuantitative Systems Pharmacology (QSP) is a critical discipline in modern drug development. It involves creating complex, mechanistic mathematical models that describe the dynamic interactions between a drug and a biological system. These models integrate pathophysiology and pharmacology to predict a drug’s effect, safety, and efficacy across diverse patient populations. At Nova In Silico, our R&D efforts are focused on building and applying these high-fidelity QSP models.A significant challenge arises when fitting these models to real-world clinical data. To account for variability between individuals, QSP models are often formulated as Non-Linear Mixed-Effects (NLME) models. Parameter estimation for NLME models, which is typically performed via Maximum Likelihood Estimation (MLE), is a difficult and computationally intensive task. Traditional estimation algorithms can take hours or even days to converge, creating a substantial bottleneck in the R&D pipeline.PyTorch-based Surrogate ModelsTo address this computational bottleneck, Nova In Silico has successfully developed surrogate models for some of our key QSP models. These surrogates, built using the PyTorch deep learning framework, are lightweight, fast-to-execute approximations of the full, complex QSP models. They are designed to capture the essential input-output behavior of the original model while dramatically reducing computation time.This speed-up has enabled us to more efficiently perform parameter estimation. Currently, we leverage our surrogate models within Expectation-Maximization (EM) type algorithms. EM is a powerful and standard method for finding maximum likelihood estimates in models with latent variables (such as the random effects in NLME models). This approach has proven effective for our existing model structures.While effective, EM-type algorithms are often tailored to specific model structures and statistical assumptions. As our R&D pipeline evolves, we aim to explore more diverse and complex surrogate model architectures and apply them to various types of clinical data. The mathematical framework of EM can be restrictive in these more general cases.Stochastic Gradient Descent (SGD) offers a compelling and flexible alternative, as these algorithms:Can be applied to a much broader family of models and data structures.Are often more computationally efficient, as they can process large datasets in small batches.Integrate natively with the PyTorch ecosystem, as gradient computation is the framework’s core function.ObjectiveThe intern will implement the stochastic approximation gradient algorithm, drawing from the principles in the reference articles, and apply it to our existing surrogate models. This will equip Nova In Silico with a novel, flexible, and powerful estimation tool, expanding our capabilities to fit next-generation QSP models to complex clinical data.You areA team player , a good listener, and an effective communicatorCurious and proactive , ready to face real-life engineering challengesAutonomous and self-motivated with strong analytical and problem-solving skillsEager to learn mathematical modeling and simulations of biological systemsWilling to explore latest advances in science and technologyResponsive and capable of tackling time-sensitive issues with agilityYou willReview the scientific literature on relevant machine learning algorithmsPrototype the stochastic gradient algorithm under Nova’s specific constraintsEvaluate benchmark cases against the alternative SAEM algorithmIntegrate solutions into Nova’s simulation platformMethodology and technical skillsWe are looking for people who know some of the following or are eager learn and work with themMachine learning in Python, PyTorchStatistical modeling, NLME modelsA professional English level (written and oral) is required for this role. #J-18808-Ljbffr
-
Internship - Machine Learning Engineer
il y a 1 jour
Lyon, France Solvay Temps pleinSolvay is a science company whose technologies bring benefits to many aspects of daily life. Our purpose—we bond people, ideas and elements to reinvent progress—is a call to go beyond, to reinvent future forms of progress and create sustainable shared value for all through the power of science. In a world facing an ever-growing population and quest for...
-
Machine Learning Engineer
il y a 2 semaines
Lyon, France Wyatt Partners Temps pleinDo you come from an Engineering background? Do you have experience building REST APIs to deliver predictive Machine Learning models?If this sounds like you and you’re interested in building & developing Recommender Engines for some of Europe’s biggest broadcasters & video content providers, then please keep reading.Wyatt Partners are working with one of...
-
Stage en Machine Learning
il y a 7 jours
Lyon 7e, France Kurage Temps pleinAt Kurage, we're a passionate team leveraging technological innovation to redefine the rehabilitation of hemiplegic patients. Our approach involves integrating Artificial Intelligence into our neuroprostheses to enable rehabilitation through physical activity, opening new horizons for individuals with impaired motor functions. **Job Description**: As an...
-
Jeune Docteur en Optimisation Et Machine Learning
il y a 2 semaines
Lyon, France Capgemini Engineering Temps plein**Capgemini Engineering**: Capgemini Engineering, leader mondial des services d'ingénierie, rassemble des équipes d'ingénieurs, de scientifiques et d'architectes pour aider les entreprises les plus innovantes dans le monde à libérer leur potentiel. Des voitures autonomes aux robots qui sauvent des vies, nos experts en technologies digitales et...
-
Machine Learning Engineer – Déploiement IA
il y a 7 jours
Lyon, Auvergne-Rhône-Alpes, France eXalt Temps pleinDescriptif du posteeXalt Lyon, recherche son/sa nouveau/elleMachine Learning Engineerpour construire, automatiser et déployer des modèles d'IA dans des environnements réels, aux côtés de nos clients. Vous serez rattaché(e) à notre bureau lyonnais.Développer, entraîner et optimiser des modèles de machine learning adaptés aux cas d'usage identifiés...
-
Machine Learning Engineer
il y a 7 jours
Lyon, France Novencia Temps plein**Carnet de route**: Novencia accompagne ses clients dans leurs projets de transformation digitale, technologique et data. Expert en Data et Intelligence Artificielle nous aidons nos clients à exploiter et valoriser leurs données sous toutes ses formes en les accompagnant sur des projets de Data Gouvernance, Data Architecture, Data Science, et Data...
-
Machine Learning
il y a 1 semaine
Lyon, France Esker Temps plein**Lyon, France**: Esker est une entreprise lyonnaise proposant à ses clients de maitriser la gestion de l’ensemble de leurs documents et processus clients et fournisseurs, et le département R&D conçoit et développe les fonctionnalités standards de leurs solutions. L’une d’elle, intitulée Cash Application, aide à allouer les règlements clients...
-
Directeur de clientèle Digital Learning
il y a 2 semaines
Lyon, France Digital Learning Academy Temps pleinGérer et développer la marge brute sur un portefeuille de contacts existants en étroite collaboration avec la direction de l’agenceEtre le pivot de la relation avec vos clientsPartager leurs ambitionsApporter le conseil attenduInitier des dispositifs multi-canaux on et off linePiloter la réalisation des campagnes, contrôler leur efficacité, leur...
-
Stagiaire en Deep Learning
il y a 1 jour
Lyon, France SNCF RESEAU Temps plein**À propos du poste** Nous recherchons un stagiaire ou une stagiaire motivé(e) et curieux(se) pour rejoindre notre équipe. Ce stage propose une immersion dans la conception et l’industrialisation de solutions Deep Learning pour la maintenance prédictive, avec des livrables concrets et exploitables par les équipes de...
-
Stage – Digital Learning
il y a 24 heures
Lyon, Auvergne-Rhône-Alpes, France GRANDLYON HABITAT Temps pleinÀ GrandLyon Habitat, nous plaçons le développement des compétences au cœur de notre mission d'utilité sociale. Convaincus que l'apprentissage est un levier essentiel de performance collective, nous développons depuis plusieurs années des dispositifs de formation accessibles, efficaces et en phase avec les évolutions de nos métiers.Dans cette...