Machine Learning-based Risk Stratification of Cardiovascular Patients Using Continuous Ecg Monitoring

il y a 3 jours


Nancy, France Banook Group Temps plein

**Machine learning-based risk stratification of cardiovascular patients using continuous ECG monitoring**: - Réf **ABG-127661** - Stage master 2 / Ingénieur - Durée 6 mois - Salaire net mensuel > 600 € - 19/12/2024 - Banook Group - Lieu de travail- Nancy Grand Est France - Champs scientifiques- Informatique - Santé, médecine humaine, vétérinaire - Sciences de l’ingénieur - Mots clés- ECG, Signal processing, Machine learning, Python **Établissement recruteur**: **Site web**: Founded in Nancy in 1999, Banook is a cardiac safety central provider specialized in the centralization of cardiac data derived from electrocardiograms (ECG) and central imaging within clinical trials. Banook relies on a network of renowned Key Opinion Leaders and a CTMS (Atrium) that ensures secured and automated data centralization. Banook serves as a key partner for pharmaceutical laboratories, biotechnology companies and generalist Contract Research Organizations (CROs) in conducting their clinical trials. While historically based in Nancy, Banook has gradually expanded internationally, with a presence in Canada and Germany following the acquisition of the Munich-based company Nabios Gmbh in 2021 and the opening of an office in Boston in 2022. The team of approximately 70 professionals is led by Alexandre Durand-Salmon **Description**: **Project overview** - Wearable devices with electrocardiogram (ECG) sensors are increasingly being used for continuous cardiovascular monitoring. However, translating the vast amount of data collected into actionable insights remains a challenge. Furthermore, the quality of ECG signals captured by wearable devices can be influenced by several factors like motion artifacts or poor sensor placement. This research project aims to tackle these challenges in the context of patient risk stratification as the early identification of individuals at higher risk of developing cardiovascular events (e.g., stroke, syncope, sudden cardiac death) is essential in disease management. **Internship objectives** - Using real-world continuous ECG recordings [1-3], develop an automated ECG quality assessment system [4] to identify high-quality ECG leads and segments. - Leverage relevant ECG features (e.g., heart rate variability metrics) to develop interpretable machine learning models for assessing the risk of cardiovascular events in asymptomatic hypertensive patients [5] and patients with chronic heart failure [6]. - Evaluate the impact of including non-ECG clinical variables in model performance. **References** - Silva, I., et al. (2011). Improving the quality of ECGs collected using mobile phones: The Physionet/CinC Challenge 201 C_omputing in Cardiology_ (pp. 273-276). - Nemcova, A., et al. (2020). Brno university of technology ECG quality database (BUT QDB). _PhysioNet_, _101_, e215-e220. - Tan, S., et al. (2019). Icentia11k: An unsupervised representation learning dataset for arrhythmia subtype discovery. _arXiv:1910.09570_. - Satija, U., et al. (2018). A review of signal processing techniques for electrocardiogram signal quality assessment. _IEEE reviews in biomedical engineering_, _11_, 36-52. - Melillo, P., et al. (2015). Automatic prediction of cardiovascular and cerebrovascular events using heart rate variability analysis. _PloS one_, _10_(3), e0118504. - Martın-Yebra, A., et al (2024). The MUSIC Database: Sudden Cardiac Death in Heart Failure Patients.C_omputing in Cardiology_. **Supervision environment** The 6-month internship is funded by Banook Group, a company specialized in drug safety clinical trials and headquartered in Nancy (France). During the internship, you will be supervised by researchers at Banook and the IADI laboratory (Inserm U1254, CHRU Nancy Brabois). **Profil**: Signal processing, Machine learning, Programming with Python **Prise de fonction**: - Dès que possible


  • HFpEF Biomarker

    il y a 1 semaine


    Nancy, France Karlstad University Temps plein

    A renowned academic institution in France is seeking a researcher to investigate cardiovascular failure. The candidate will analyze endothelial glycocalyx dynamics using omics data and develop predictive models for heart failure progression. The position requires a PhD, expertise in programming, and a strong background in biostatistics and machine learning....

  • Researcher

    il y a 7 jours


    Nancy, France Karlstad University Temps plein

    LabAcute and Chronic Cardiovascular Failure (DCAC) (UMR_S 1116) / Multidisciplinary Clinical Investigation Center (CIC-P 1433) Job Description The recruited candidate will work on the alterations of the endothelial glycocalyx in heart failure with preserved ejection fraction (PMID: 40439171). Main Missions Analyze the degradation of the endothelial...


  • Nancy, France Banook Group Temps plein

    **Universal deep learning model for tumor lesion segmentation**: - Réf **ABG-127662** - Stage master 2 / Ingénieur - Durée 6 mois - Salaire net mensuel > 600 € - 19/12/2024 - Banook Group - Lieu de travail- Nancy Grand Est France - Champs scientifiques- Informatique - Santé, médecine humaine, vétérinaire - Sciences de l’ingénieur - Mots clés-...


  • 54600 Villers-lès-Nancy, France Inria Temps plein

    Le descriptif de l’offre ci-dessous est en Anglais_ **Type de contrat **:Convention de stage **Niveau de diplôme exigé **:Bac + 4 ou équivalent **Fonction **:Stagiaire de la recherche **Contexte et atouts du poste**: This master internship is part of the **REAVISE** project: “Robust and Efficient Deep Learning based Audiovisual Speech...


  • Villers-lès-Nancy, Grand Est, France Inria Temps plein

    Le descriptif de l'offre ci-dessous est en AnglaisType de contrat : Convention de stageNiveau de diplôme exigé : Bac + 4 ou équivalentFonction : Stagiaire de la rechercheContexte et atouts du posteContext and funding:This position is funded by the PEPR O2R AS3 project.Within this framework, the HUCEBOT team is developing multimodal strategies for online...

  • Software Tester

    il y a 1 semaine


    Nancy, France Ypso-Facto Temps plein

    **About Ypso-Facto**: Ypso-Facto is an innovative company driven by its scientific background, providing disruptive software solution in predictive simulations for life science industries. We are seeking talented individuals to join our team and participate in the development of cutting-edge solution. **Importance of the role**: Are you a seasoned software...


  • Villers-lès-Nancy, France Inria Temps plein

    **Type de contrat**: CDD **Contrat renouvelable**: Oui **Niveau de diplôme exigé**: Thèse ou équivalent **Fonction**: Post-Doctorant **Contexte et atouts du poste**: This position is funded by the euROBIN European project (European Network of Excellence in ROBotics and AI), which involves 32 partners in Europe. Our team is participating in one of the...

  • Sr DevOps Engineer

    il y a 3 jours


    Nancy, Grand Est, France Aspen Technology Temps plein

    The driving force behind our success has always been the people of AspenTech. What drives us, is our aspiration, our desire and ambition to keep pushing the envelope, overcoming any hurdle, challenging the status quo to continually find a better way. You will experience these qualities of passion, pride and aspiration in many ways — from a rich set of...

  • Master internship

    il y a 1 semaine


    Nancy, Grand Est, France Loria Temps plein

    Master 2 Research Internship – Acoustic Aware Speech Enhancement in Distributed Microphone ArraysLab:Loria / Inria Nancy – Grand Est, Nancy )Supervisors:Romain Serizel (LORIA), François Effa (LORIA)Start:Spring 2026Duration:6 MonthsMotivations and contextThis internship takes place within the ANR-DFG project AWESOME. The project involves researchers...


  • Villers-lès-Nancy, Grand Est, France Inria Temps plein

    Le descriptif de l'offre ci-dessous est en AnglaisType de contrat : Convention de stageNiveau de diplôme exigé : Bac + 4 ou équivalentFonction : Stagiaire de la rechercheContexte et atouts du posteThis master internship is part of the REAVISE project: "Robust and Efficient Deep Learning based Audiovisual Speech Enhancement" funded by the French National...