Universal Deep Learning Model for Tumor Lesion Segmentation

il y a 2 jours


Nancy, France Banook Group Temps plein

**Universal deep learning model for tumor lesion segmentation**: - Réf **ABG-127662** - Stage master 2 / Ingénieur - Durée 6 mois - Salaire net mensuel > 600 € - 19/12/2024 - Banook Group - Lieu de travail- Nancy Grand Est France - Champs scientifiques- Informatique - Santé, médecine humaine, vétérinaire - Sciences de l’ingénieur - Mots clés- ECG, Signal processing, Machine learning, Python **Établissement recruteur**: **Site web**: Founded in Nancy in 1999, Banook is a cardiac safety central provider specialized in the centralization of cardiac data derived from electrocardiograms (ECG) and central imaging within clinical trials. Banook relies on a network of renowned Key Opinion Leaders and a CTMS (Atrium) that ensures secured and automated data centralization. Banook serves as a key partner for pharmaceutical laboratories, biotechnology companies and generalist Contract Research Organizations (CROs) in conducting their clinical trials. While historically based in Nancy, Banook has gradually expanded internationally, with a presence in Canada and Germany following the acquisition of the Munich-based company Nabios Gmbh in 2021 and the opening of an office in Boston in 2022. The team of approximately 70 professionals is led by Alexandre Durand-Salmon **Description**: **Project overview** - Accurate and reliable tumor segmentation on medical images is critical for diagnosing and managing cancer. While deep learning (DL) models have shown great promise in automating this process, the standard methodology for training these models consists in developing separate models for specific medical objects (e.g., organs or tumors) and imaging modalities (e.g., MRI, CT, and PET), which limits their generalizability. Furthermore, existing DL frameworks often lack uncertainty quantification, which is essential to assess model reliability, especially in cases of ambiguous or low-quality imaging data. This research project thus aims to develop a DL-based tumor segmentation model that works across multiple imaging modalities, organs and tumor types, and provides well-calibrated confidence estimates alongside its predictions. **Internship objectives** - Define a model building and evaluation pipeline that leverages publicly available datasets (e.g., Cancer Imaging archive [1], Medical Segmentation Decathlon [2], SA-Med2D-20M [3]) - Propose a universal deep learning framework [4] that allows to segment tumor lesions across imaging modalities, organs and tumor types - Incorporate uncertainty quantification [5] to the proposed framework **References** - Prior, F., et al. (2017). The public cancer radiology imaging collections of The Cancer Imaging Archive. _Scientific Data_, _4_(1), 1-7. - Antonelli, M., et al. (2022). The medical segmentation decathlon. _Nature Communications_, _13_(1), 4128. - Ye, J., et al. (2023). SA-MED2D-20M dataset: Segment anything in 2D medical imaging with 20 million masks. _arXiv:2311.11969_. - Ma, J., et al. (2024). Segment anything in medical images. _Nature Communications_, _15_(1), 654. - Lambert, B., et al. (2024). Trustworthy clinical AI solutions: a unified review of uncertainty quantification in deep learning models for medical image analysis. _AI in Medicine_, 102830. **Supervision environment** The 6-month internship is funded by Banook Group, a company specialized in drug safety clinical trials and headquartered in Nancy (France). During the internship, you will be supervised by researchers at Banook and the IADI laboratory (Inserm U1254, CHRU Nancy Brabois). **Profil**: Image processing, Deep learning, Programming with Python and its PyTorch library **Prise de fonction**: - Dès que possible



  • Villers-lès-Nancy, France INRIA Temps plein

    Une institution de recherche en informatique recherche un ingénieur en robotique pour développer des outils de vision avec deep learning et intégrer divers systèmes pour des robots humanoïdes. Les candidat(e)s doivent avoir de bonnes compétences en Python et/ou C++, ainsi que des bases en robotique et machine learning. Des avantages tels que 7 semaines...


  • Villers-lès-Nancy, Grand Est, France Inria Temps plein

    Le descriptif de l'offre ci-dessous est en AnglaisType de contrat : Convention de stageNiveau de diplôme exigé : Bac + 4 ou équivalentFonction : Stagiaire de la rechercheContexte et atouts du posteThis master internship is part of the REAVISE project: "Robust and Efficient Deep Learning based Audiovisual Speech Enhancement" funded by the French National...


  • 54600 Villers-lès-Nancy, France Inria Temps plein

    Le descriptif de l’offre ci-dessous est en Anglais_ **Type de contrat **:Convention de stage **Niveau de diplôme exigé **:Bac + 4 ou équivalent **Fonction **:Stagiaire de la recherche **Contexte et atouts du poste**: This master internship is part of the **REAVISE** project: “Robust and Efficient Deep Learning based Audiovisual Speech...


  • Nancy, France Inria Temps plein

    Doctorant F/H Deciphering long-range communications within macromolecular complexesFonction : DoctorantThis 3-year PhD position is funded by the prestigious Programme Inria Quadrant (PIQ) for the project DynaNova, which aims to advance our understanding of conformational dynamics and allosteric communication in macromolecular complexes. The successful...


  • Villers-lès-Nancy, France INRIA Temps plein

    Contexte et atouts du poste Notre équipe travaille sur l'apprentissage par imitation en robotique humanoïde pour des applications industrielles. Dans ce projet, notre but est de recruter un à deux ingénieurs pour contribuer : au développement d'outils de vision basés sur le deep learning adaptés aux algorithmes d'apprentissage et aux applications...

  • Stagiaire R&d

    il y a 6 jours


    Nancy, France Zhortech Temps plein

    **Stage : validation d’outil et biomécanique du mouvement pour un dispositif médical** L’entreprise Zhortech, basée à Nancy, développe des solutions d'analyse de la marche, de la course et le bilan en kinésithérapie à l'aide de semelles connectées. L’entreprise souhaite étendre son analyse à de nouveaux paramètres biomécaniques. Les...


  • Nancy, France Banook Group Temps plein

    **Machine learning-based risk stratification of cardiovascular patients using continuous ECG monitoring**: - Réf **ABG-127661** - Stage master 2 / Ingénieur - Durée 6 mois - Salaire net mensuel > 600 € - 19/12/2024 - Banook Group - Lieu de travail- Nancy Grand Est France - Champs scientifiques- Informatique - Santé, médecine humaine, vétérinaire -...

  • Master internship

    il y a 1 semaine


    Nancy, Grand Est, France Loria Temps plein

    Master 2 Research Internship – Acoustic Aware Speech Enhancement in Distributed Microphone ArraysLab:Loria / Inria Nancy – Grand Est, Nancy )Supervisors:Romain Serizel (LORIA), François Effa (LORIA)Start:Spring 2026Duration:6 MonthsMotivations and contextThis internship takes place within the ANR-DFG project AWESOME. The project involves researchers...


  • Villers-lès-Nancy, Grand Est, France Inria Temps plein

    Le descriptif de l'offre ci-dessous est en AnglaisType de contrat : CDDNiveau de diplôme exigé : Thèse ou équivalentFonction : Post-DoctorantNiveau d'expérience souhaité : De 3 à 5 ansContexte et atouts du posteThis 2-year postdoctoral position is funded by the prestigious Programme Inria Quadrant (PIQ) for the project DynaNova, which aims to advance...


  • Villers-lès-Nancy, Grand Est, France Inria Temps plein

    Le descriptif de l'offre ci-dessous est en AnglaisType de contrat : Convention de stageNiveau de diplôme exigé : Bac + 4 ou équivalentFonction : Stagiaire de la rechercheContexte et atouts du posteThis master internship is part of the REAVISE project: "Robust and Efficient Deep Learning based Audiovisual Speech Enhancement" funded by the French National...