Exploring new spin defects in two dimensional semiconductors

il y a 4 heures


Palaiseau, Île-de-France Ecole Polytechnique Temps plein
Exploring new spin defects in two dimensional semiconductors // Exploring new spin defects in two dimensional semiconductors

Réf ABG-135040

ADUM-68410

Sujet de Thèse

13/01/2026

École polytechnique

Lieu de travail

Palaiseau Cedex - Ile-de-France - France

Intitulé du sujet

Exploring new spin defects in two dimensional semiconductors // Exploring new spin defects in two dimensional semiconductors

Mots clés

2d materials, spin, semiconductors

2d materials, spin, semiconductors

Description du sujet

One of the most active research areas in condensed matter physics today focuses on the electronic and optical properties of atomically thin semiconductors, a field that rapidly emerged following the discovery of graphene in 2004. In recent years, studies have largely concentrated on the intrinsic excitonic properties of monolayers such as MoS₂ and WSe₂, which display remarkable light–matter coupling and rich excitonic physics.

More recently, individual defects in these materials have attracted considerable attention because they can act as single-photon emitters, enabling the precise localization of optical centers within a single atomic layer. A key open question for quantum applications is whether such defects can host optically addressable spin states, similar to NV centers in diamond but this time embedded within a 2D surface.

Very recently, it has been demonstrated that thin layers of germanium disulfide (GeS₂) exhibit spin-defect-related emission that remains detectable at room temperature. Owing to the atomic-scale thickness of these materials and the extreme sensitivity of spin defects to local electromagnetic fields, temperature, and strain, they hold great promise for quantum sensing applications that operate in close proximity to the target system.

In this project, the PhD candidate will:

  • Fabricate 2D materials from bulk crystals using our mechanical exfoliation setup,
  • Create spin defects with controlled density through high-temperature annealing, and
  • Characterize their spin properties at room and cryogenic temperatures under different conditions by using optical detection of spin resonance (ODMR).
The ultimate goal is to isolate single spin defects and demonstrate long spin coherence times. This project is an experimental one, and is ideally suited for a student with an interest in fundamental semiconductor physics, 2D materials, and quantum technologies.

One of the most active research areas in condensed matter physics today focuses on the electronic and optical properties of atomically thin semiconductors, a field that rapidly emerged following the discovery of graphene in 2004. In recent years, studies have largely concentrated on the intrinsic excitonic properties of monolayers such as MoS₂ and WSe₂, which display remarkable light–matter coupling and rich excitonic physics.

More recently, individual defects in these materials have attracted considerable attention because they can act as single-photon emitters, enabling the precise localization of optical centers within a single atomic layer. A key open question for quantum applications is whether such defects can host optically addressable spin states, similar to NV centers in diamond but this time embedded within a 2D surface.

Very recently, it has been demonstrated that thin layers of germanium disulfide (GeS₂) exhibit spin-defect-related emission that remains detectable at room temperature. Owing to the atomic-scale thickness of these materials and the extreme sensitivity of spin defects to local electromagnetic fields, temperature, and strain, they hold great promise for quantum sensing applications that operate in close proximity to the target system.

In this project, the PhD candidate will:

  • Fabricate 2D materials from bulk crystals using our mechanical exfoliation setup,
  • Create spin defects with controlled density through high-temperature annealing, and
  • Characterize their spin properties at room and cryogenic temperatures under different conditions by using optical detection of spin resonance (ODMR).
The ultimate goal is to isolate single spin defects and demonstrate long spin coherence times. This project is an experimental one, and is ideally suited for a student with an interest in fundamental semiconductor physics, 2D materials, and quantum technologies.

Début de la thèse : 01/10/2026

WEB :

Nature du financement
Précisions sur le financement

Appel anticipé*Concours IPP ou école membre*Allocation doctorale AMX*

Présentation établissement et labo d'accueil

École polytechnique

Etablissement délivrant le doctorat

École polytechnique

Ecole doctorale

626 Ecole Doctorale de l'Institut Polytechnique de Paris

Profil du candidat

Le(a) candidat(e) devra avoir des connaissances solides en physique quantique et, idéalement, sur la physique des semi-conducteurs. Le candidat doit apprécier le défi pratique de faire fonctionner une expérience, et toute expérience préalable dans les mesures optiques ou en microscopie tunnel serait un gros avantage. Des connaissances en analyse des données avec Python ou Origin sont recommandées.

The PhD candidate should have a strong background in quantum physics and, ideally, in semiconductor physics. The candidate shoul denjoy the practical challenge of making an experiment work, and any prior experience in optical measurements or with scanning tunneling microscopy would be a big advantage. Skills in data treatment using Python and/or origin are strongly recommended.

Date limite de candidature

28/02/2026



  • Palaiseau, Île-de-France CEA Temps plein

    Informations générales Entité de rattachement Le CEA est un acteur majeur de la recherche, au service des citoyens, de l'économie et de l'Etat.Il apporte des solutions concrètes à leurs besoins dans quatre domaines principaux : transition énergétique, transition numérique, technologies pour la médecine du futur, défense et sécurité sur un...


  • Palaiseau, Île-de-France Ecole Polytechnique Temps plein

    Acousto-magneto-plasmonique quantique ultrarapide // Ultrafast quantum acousto-magneto-plasmonicsRéf ABG-135052ADUM-68489Sujet de Thèse13/01/2026Contrat doctoralÉcole polytechniqueLieu de travailPalaiseau - Ile-de-France - FranceIntitulé du sujetAcousto-magneto-plasmonique quantique ultrarapide // Ultrafast quantum acousto-magneto-plasmonicsMots...


  • Palaiseau, Île-de-France Ecole Polytechnique Temps plein

    Holographie, horizons cosmologiques et information quantique en gravité quantique // Holography, Cosmological Horizons, and Quantum Information in Quantum GravityRéf ABG-135144ADUM-69220Sujet de Thèse16/01/2026École polytechniqueLieu de travailPalaiseau Cedex - Ile-de-France - FranceIntitulé du sujetHolographie, horizons cosmologiques et information...


  • Palaiseau, Île-de-France ECOLE NATIONALE SUPERIEURE DE TECHNIQUES AVANCEES Temps plein

    DÉVELOPPEMENT D'UN DISPOSITIF D'AMORTISSEMENT « INTELLIGENT » PAR FABRICATION ADDITIVE // DEVELOPMENT OF AN "INTELLIGENT" DAMPING DEVICE BY ADDITIVE MANUFACTURINGRéf ABG-135079ADUM-68813Sujet de Thèse13/01/2026École nationale supérieure de techniques avancéesLieu de travailPalaiseau - Ile-de-France - FranceIntitulé du sujetDÉVELOPPEMENT D'UN...

  • Senior System Architect

    il y a 4 heures


    Palaiseau, Île-de-France Pasqal Temps plein

    About PasqalPASQAL has the ambition of building and developing Quantum Processing Units (QPU) enabling highly performant computation using neutral atoms manipulated with lasers. On the hardware level, the complexity of the system makes this journey unique and interesting.Professional contextIn the Platform Architecture team of the HW department, we are...


  • Palaiseau, Île-de-France Ecole Polytechnique Temps plein

    Test d'indépendance conditionnelle efficace et robuste // Scalable and Robust Conditional Independence TestingRéf ABG-135047ADUM-68476Sujet de Thèse13/01/2026École polytechniqueLieu de travailPalaiseau Cedex - Ile-de-France - FranceIntitulé du sujetTest d'indépendance conditionnelle efficace et robuste // Scalable and Robust Conditional Independence...


  • Palaiseau, Île-de-France Ecole Polytechnique Temps plein

    Plasmons dans l'infrarouge pour modifier des réaction électrochimiques // Infrared surface plasmons for modifying electrochemical reactionsRéf ABG-135015ADUM-68217Sujet de Thèse13/01/2026Autre financement publicÉcole polytechniqueLieu de travailPalaiseau Cedex - Ile-de-France - FranceIntitulé du sujetPlasmons dans l'infrarouge pour modifier des...


  • Palaiseau, Île-de-France CEA Temps plein

    Informations générales Entité de rattachement Le CEA est un acteur majeur de la recherche, au service des citoyens, de l'économie et de l'Etat.Il apporte des solutions concrètes à leurs besoins dans quatre domaines principaux : transition énergétique, transition numérique, technologies pour la médecine du futur, défense et sécurité sur un...


  • Palaiseau, Île-de-France CEA Temps plein

    Informations générales Entité de rattachement Le CEA est un acteur majeur de la recherche, au service des citoyens, de l'économie et de l'Etat.Il apporte des solutions concrètes à leurs besoins dans quatre domaines principaux : transition énergétique, transition numérique, technologies pour la médecine du futur, défense et sécurité sur un...

  • Application Engineer

    il y a 4 heures


    Palaiseau, Île-de-France Bruker Corporation Temps plein

    OverviewBruker is enabling scientists to make breakthrough discoveries and develop new applications that improve the quality of human life. Bruker's high performance scientific instruments and high value analytical and diagnostic solutions enable scientists to explore life and materials at molecular, cellular, and microscopic levels. In close cooperation...